A Review of Smart Agricultural Prime Movers and Its Potential Use for Paddy and Pineapple Production in Malaysia

Authors

  • Badril Abu Bakar
  • Siti Noor Alliah Baharom
  • Rohazrin Abd Rani
  • Mohd Taufik Ahmad
  • Mohd Nizam Zubir
  • Adli Fikri Ahmad Sayuti
  • Mohd Nadzim Nordin
  • Mohammad Aufa Mhd Bookeri
  • Mohamad Fakhrul Zaman Omar
  • Jusnaini Muslimin
  • Ahmad Safuan Bujang
  • Mohd Zamri Khairi Abdullah
  • Ramlan Ismail
  • Muhammad Hariz Musa

DOI:

https://doi.org/10.36877/aafrj.a0000368

Abstract

This work reviews the current state of the art for smart agricultural prime movers in Malaysia. The definition and levels of autonomy are discussed to help readers understand the context of such vehicles. It examines the use of smart agricultural prime movers in the global market. It also discusses the issues and challenges facing its implementation in Malaysia. The role of smart agricultural prime movers in realizing Malaysia’s fourth industrial revolution (IR4.0) aspirations in Malaysia is explored. Finally, areas of where this technology can be implemented are proposed.

References

Abdullah Al-Amin, A. K. M., Lowenberg-DeBoer, J., Franklin, K., et al. (2022). Economics of field size for autonomous crop machines. 15th International Conference On Precision Agriculture. Minneapolis, Minnesota, The International Society of Precision Agriculture.

Abu Bakar, B., Ahmad, T., Ghazali, M. S. S., et al. (2019). Leveling-index based variable rate seeding technique for paddy. Precision Agriculture, 21(4), 729–736.

Abu Bakar, B., Baharom, S. N. A., Rani, R. A., et al. (2021). A review of mechanization and automation in Malaysia’s pineapple production. Advances in Agricultural and Food Research Journal.

Abu Bakar, B., Veres, S. M. (2010). A multi-agent approach to integrated FDI & reconfiguration of autonomous systems. IASTED Conference on Artificial Intelligence and Applications, Feb 15-17, 2010, Innsbruck, Austria.

AgLeader. (2022). SteadySteer. Retrieved from https://www.agleader.com/guidance-and-steering/steadysteer/?locale=en.

Ai, C., Geng, D., Qi, Z., et al. (2021). Research on AGV Navigation System based on binocular vision. 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR).

Aldossari, M. Q., Sidorova, A. (2018). Consumer acceptance of Internet of Things (IoT): Smart home context. Journal of Computer Information Systems, 60(6), 507–517.

Alenya, G., Dellen, B., Foix, S., et al. (2013). Robotized plant probing: Leaf segmentation utilizing time-of-flight data. IEEE Robotics & Automation Magazine, 20(3), 50–59.

Arad, B., Balendonck, J., Barth, R., et al. (2020). Development of a sweet pepper harvesting robot. Journal of Field Robotics, 37(6), 1027–1039.

Balafoutis, A., Beck, B., Fountas, S., et al. (2017). Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability, 9(8).

Bartolini, C., Tettamanti, T., Varga, I. (2017). Critical features of autonomous road transport from the perspective of technological regulation and law. Transportation Research Procedia, 27, 791–798.

Blackmore, S. (2009). New concepts in agricultural automation. HGCA Conference – 28 and 29 October Precision in arable farming — current 'practice and future potential', Lincolnshire, UK.

Blatrix, R., Aramayo, J. L., Zangerle, A., et al. (2022). Interpreting landscapes of pre-Columbian raised-field agriculture using high-resolution LiDAR topography. Journal of Archaeological Science: Reports, 42, 103408.

Blender, T., Buchner, T., Fernandez, B., et al. (2016). Managing a Mobile Agricultural Robot Swarm for a seeding task. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

Bonadies, S., Alan, L., Andrew, G. S. (2016). A survey of unmanned ground vehicles with applications to agricultural and environmental sensing. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, 9866.

Busemeyer, L., Mentrup, D., Moller, K., et al. (2013). BreedVision — A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors (Basel), 13(3), 2830–2847.

Che’Ya, N. N., Shariff, R., Jahanshiri, E, et al. (2013). Web-based decision support system for paddy planting management. Pertanika Journal of Science & Technology, 21(2), 343–364.

Couliably, S., Kamsu-Foguem, B., Kamissoko, D., et al. (2022). Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems with Applications, 200102.

[EDB] Economic Development Board. (2018). The Singapore Smart Industry Readiness Index. Singapore.

[EPU] Economic Planning Unit. (2021a). Rancangan Malaysia Kedua Belas, 2021–2025. E. P. Unit. Kuala Lumpur, Perecetakan Nasional Malaysia Berhad.

[EPU] Economic Planning Unit. (2021b). Dasar Revolusi Perindustrian Keempat (4IR) Negara. E. P. Unit. Putrajaya, Percetakan Nasional Malaysia Berhad.

Fan, J., Zhang, Y., Wen, W., et al. (2021). The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform. Journal of Cleaner Production, 280.

FJDynamics. (2022). FJD Autosteering kit. Retrieved from https://www.fjdynamics.com/product/autosteeringkit.html.

Frank, A. G., Dalenogare, L. S., Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26.

Fue, K., Porter, W., Barnes, E., et al. (2020). Evaluation of a stereo vision system for cotton row detection and boll location estimation in direct sunlight. Agronomy, 10(8), 1137.

Geenen, B. (2020). 2020 autonomous vehicle technology report. Amsterdam: Wevolver. pp. 78.

Gonzalez-De-Santos, P., Fernandez, R., Sepulveda, D., et al. (2020). Unmanned ground vehicles for smart farms. Agronomy - Climate Change and Food Security, IntechOpen.

Holland, K. H., Schepers, J. S. (2010). Derivation of a variable rate nitrogen application model for in‐season fertilization of corn. Agronomy Journal, 102(5), 1415–1424.

Ismail, N., Malik, O. A. (2022). Real-time visual inspection system for grading fruits using computer vision and deep learning techniques. Information Processing in Agriculture, 9(1), 24–37.

Jimenez, A., Cardenas, P., Canales, A., et al. (2020). A survey on intelligent agents and multi-agents for irrigation scheduling. Computers and Electronics in Agriculture, 176.

Jing, Y., Liu, G., Luo, C. (2021). Path tracking control with slip compensation of a global navigation satellite system based tractor-scraper land levelling system. Biosystems Engineering, 212, 360–377.

Kamilaris, A., Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90.

Killoran, J. B. (2013). How to use search engine optimization techniques to increase website visibility. IEEE Transactions on Professional Communication, 56(1), 50–66.

Kneip, J., Fleischmann, P., Berns, K. (2020). Crop edge detection based on stereo vision. Robotics and Autonomous Systems, 123, 103323.

Köksal, Ö., Tekinerdogan, B. (2018). Architecture design approach for IoT-based farm management information systems. Precision Agriculture, 20(5), 926–958.

Koppen-Seliger, B., Frank, P. M., Wolff, A. (1995). Residual evaluation for fault detection and isolation with RCE neural networks. Proceedings of 1995 American Control Conference - ACC'95, Seattle, WA, USA, 1995, pp. 3264–3268 vol.5. https://doi.org/10.1016/S0098-1354(02)00160-6.

Kumar, G. A., Ramya, M., Kumar, C. R. (2013). Wedding of robots with agriculture. Journal of Agricultural Research And Development, 3(5), 77–81.

Kurashiki, K., Takayama, R., Kono, K., et al. (2021). LIDAR based localization using simplified 2D map on agricultural roads. Measurement: Sensors, 18, 100298.

Lasi, H., Fettke, P., Kemper, H., et al. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242.

Li, S., Zhang, M., Ji, Y., et al. (2021). Computers and Electronics in Agriculture, 191, 106524.

Lioutas, E. D., Charatsari, C., La Rocca, G., et al. (2022). Key questions on the use of big data in farming: An activity theory approach. NJAS: Wageningen Journal of Life Sciences, 90–91(1), 1–12.

[MAFI] Ministry of Agriculture and Food Industries. (2021). Dasar Agromakanan Negara 2.0 2021–2030. Putrajaya: MAFI.

Mishra, S., Sachan, R., Rajpal, D. (2020). Deep convolutional neural network based detection system for real-time corn plant disease recognition. International conference on computational intelligence and data science (ICCIDS 2019), Chennai, India, Procedia 167: 2003–2010.

[MoA] Ministry of Agriculture. (2020). Agrofood Statistics 2020. Putrajaya, Malaysia: MAFI.

Rahim, H., Ghazali, M. S. S. M., Mohd Bookeri, M. A., et al. (2021). Economic potential of rice precision farming in malaysia: the case study of Felcra Seberang Perak. Precision Agriculture, 23(3), 812–829.

Roshanianfard, A., Noguchi, N., Ardabili, S., et al. (2022). Autonomous robotic system for pumpkin harvesting, Agronomy, 12(7).

Ruckelhausen, A., Biber, P., Dorna, M., et al. (2009). BoniRob: Eine mobile Feldroboterplattform für eine individuelle Phänotypisierung von Pflanzen [BoniRob: An autonomous field robot platform for individual plant phenotyping]. Precision Agriculture '09, ECPA, European Conference on Precision Agriculture, 7, Wageningen, Academic Publishers.

Sa, I., Ge, Z., Dayoub, F., et al. (2016). DeepFruits: A fruit detection system using deep neural networks. Sensors (Basel), 16(8).

SAE International. (2021). J3016 taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE International.

Sanaye, S., Meybodi, M. A., Shokrollahi, S. (2008). Selecting the prime movers and nominal powers in combined heat and power systems. Applied Thermal Engineering, 28(10), 1177–1188.

Sari, S. (2022). Comparison of camera-based and LiDAR-based object detection for agricultural robots. Proceedings of International Conference on Information Technology and Applications, Singapore, Springer Nature Singapore.

Schepers, J. S., Holland, K. (2011). Active-crop sensor calibration using the virtual-reference concept. Precision Agriculture 2011 - Papers Presented at the 8th European Conference on Precision Agriculture 2011, ECPA 2011.

Shi, Y., Wang, N., Taylor, R. K., et al. (2015). Improvement of a ground-LiDAR-based corn plant population and spacing measurement system. Computers and Electronics in Agriculture, 112, 92–101.

Steward, B. L., Gai, J., Tang, L. (2019). The use of agricultural robots in weed management and control. Robotics and Automation for Improving Agriculture, 161–186.

Stone, R. & Ball, J. (2004). Chapter 2 thermodynamics of prime movers. Automotive Engineering Fundamentals, SAE, 17–99.

Trimble (2022). Autopilot™ automated steering system. Retrieved from https://agriculture.trimble.com/product/autopilot-automated-steering-system/.

Wang, H., Li, B., Liu, G., et al. (2012). Design and test of pineapple harvesting manipulator. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 28(SUPPL. 2), 42–46.

Wang, H., Noguchi, N. (2019). Navigation of a robot tractor using the centimeter level augmentation information via Quasi-Zenith satellite system. Engineering in Agriculture, Environment and Food, 12(4), 414–419.

Wang, X., McGill, T. J., Klobas, J. E. (2018). I want it anyway: Consumer perceptions of smart home devices. Journal of Computer Information Systems, 60(5), 437–447.

Yokoyama, K. (2019). Self-driving robot tractor: Yanmar technology for sustainable agriculture. Okoyama, Japan, YANMAR Agribusiness Co. Ltd.

Zapotezny-Anderson, P., Lehnert, C. (2019). Towards active robotic vision in agriculture: A deep learning approach to visual servoing in occluded and unstructured protected cropping environments. IFAC-PapersOnLine. 52(30), 120–125.

Zhai, Z., Martinez, J. F., Beltran, V., et al. (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170.

Zhang, L., Zhang, R., Li, L., et al. (2022). Research on virtual Ackerman steering model based navigation system for tracked vehicles. Computers and Electronics in Agriculture, 192, 106615.

Zhou, L., Song, L., Xie, C., et al. (2013). Applications of Internet of Things in the facility agriculture. IFIP International Federation for Information Processing 2013. D. L. a. Y. Chen: 297–303.

Downloads

Published

2025-09-30

How to Cite

Abu Bakar, B., Baharom, S. N. A., Abd Rani, R., Ahmad, M. T., Zubir, M. N., Ahmad Sayuti, A. F., Nordin, M. N., Mhd Bookeri, M. A., Omar, M. F. Z., Muslimin, J., Bujang, A. S., Abdullah, M. Z. K., Ismail, R., & Musa, M. H. (2025). A Review of Smart Agricultural Prime Movers and Its Potential Use for Paddy and Pineapple Production in Malaysia. Advances in Agricultural and Food Research Journal, 6(2). https://doi.org/10.36877/aafrj.a0000368

Issue

Section

REVIEW ARTICLE
Abstract viewed = 31 times
PDF downloaded = 11 times