Unleashing the Power of Artificial Intelligence-Driven Drug Discovery in Streptomyces
DOI:
https://doi.org/10.36877/pmmb.a0000453Abstract
The rise of antibiotic resistance has created an urgent need for the discovery of new antibiotic compounds. Streptomycin, the first antibiotic isolated from Streptomyces sp., paved the way for discovering other antibiotics for combating bacterial infections. By exploring the genome-based biosynthetic potential of various Streptomyces species, a vast array of secondary metabolites with potential therapeutic applications can be identified, contributing a transformative impact on the field of medicine. However, conventional screening approaches on novel natural products (NPs) from Streptomyces sp. have entered a bottleneck due to inefficiency. Fortunately, artificial intelligence (AI) and machine learning (ML) models enable rapid exploration and prediction of potential antibiotic compounds, increasing the probability of discovering new antibacterial compounds. AI-driven drug discovery in Streptomyces sp. represents a paradigm shift in the future quest for novel pharmaceutical agents. Various ML models have been developed and applied in different practical applications. Overall, the ML model is trained using input data and generates outcomes based on prediction output. This review discusses the continued potential of Streptomyces sp. as a source of novel NPs, along with the application of ML throughout the NP drug discovery pipeline involving genome mining, biological activities prediction, and optimization compound production in Streptomyces microbial systems.
Graphical abstract: The role of machine learning in drug discovery from Streptomyces.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wei-Shan Ang, Jodi Woan-Fei Law, Yatinesh Kumari, Vengadesh Letchumanan, Loh Teng-Hern Tan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
Â
This broad license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
The author(s) permits HH Publisher to publish this article that has not been submitted elsewhere.