Cover Image

Vibrio parahaemolyticus: The protagonist of foodborne diseases

Vengadesh Letchumanan, Ke-Yan Loo, Jodi Woan-Fei Law, Sunny Hei Wong, Bey-Hing Goh, Nurul-Syakima Ab Mutalib, Learn-Han Lee Abstract - 3154 PDF - 83


Food contamination is a worrying condition faced by us today. We often discuss on the food safety aspect and how to manage contamination. Food products can be tainted by bacteria at any level of food production to human consumption, subsequently developing gastroenteritis. The people from developed and developing countries are at high risk from harmful effects of unsafe food. Of all the foodborne pathogens, Vibrio parahaemolyticus has been accounted for many outbreaks globally and still at rise even with proper management methods. V. parahaemolyticus infection occurs as a result of improper food handling and preparation, ability of the bacterium to withstand human gut to launch virulence, antibiotic resistant bacterium, and failure of regulatory bodies to safe-guard food quality. This scenario poses a global health issue that warrants rapid control measures to ensure food safety from production to consumption by consumers. For that reason, this review aims to provide an overview of the epidemiology of V. parahaemolyticus as well as discuss the challenges faced to encounter this bacterium.

Full Text:



World Health Organization. WHO estimates of the global burden of foodborne diseases. Foodborne diseases burden epidemiology reference group 2007-2015. 2015. Accessed on 4 July 2019; Available from: fergreport/en/.

Fund F, Wang HS, Menon S. Food safety in the 21st century. Biomed J 2018; 41: 88-95.

World Health Organization. Food Safety Fact sheet no. 399. 2015. Accessed on 4 July 2019; Available from:

Khoo CH, Cheah YK, Lee LH, et al. Virulotyping of Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry meat in Malaysia using multiplex-PCR. Antonie van Leeuwenhoek 2009; 96(4): 441-457.

Cheah YK, Learn-Han L, Noorzaleha AS, et al. Characterization of multiple-antimicrobial-resistant Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry in Malaysia. Lett App Microbiol 2008a; 46(3): 318-324.

Cheah YK, Salleh NA, Lee LH, et al. Comparison of PCR fingerprinting techniques for the discrimination of Salmonella enterica subsp. enterica serovar Weltevreden isolated from indigenous vegetables in Malaysia. World J Microbiol Biotech 2008; 24(3): 327-335.

Learn-Han L, Cheah YK, Salleh NA, et al. Analysis of Salmonella Agona and Salmonella Weltevreden in Malaysia by PCR fingerprinting and antibiotic resistance profiling. Antonie Van Leeuwenhoek 2008; 94(3): 377-387.

Learn-Han L, Cheah YK, Shiran MS, et al. Molecular characterization and antimicrobial resistance profiling of Salmonella enterica subsp. enterica isolated from ‘Selom’ (Oenanthe stolonifera). Inter Food Res J 2009; 16(1): 191-202.

Eng SK, Pusparajah P, Ab Mutalib NS, et al. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015; 8(3): 284-293.

Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence and advance molecular identification techniques. Front Microbiol 2014; 5: 1-13.

Letchumanan V, Yin WF, Lee LH, et al. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 2015a; 6: 1-11.

Letchumanan V, Pusparajah P, Tan LT-H, et al. Occurrence and Antibiotic resistance of Vibrio parahaemolyticus from shellfish in Selangor, Malaysia. Front Microbiol 2015b; 6: 1-11.

Law JWF, Letchumanan V, Chan KG, et al. Insights into detection and identification of foodborne pathogens. Edited by Om V. Singh. Food Borne Pathogens and Antibiotic Resistance. WILEY Blackwell 2016.

Heng SP, Letchumanan V, Deng CY, et al. Vibrio vulnificus: an environmental and clinical burden. Front Microbiol 2017; 8: 1-14.

Law JWF, Ab Mutalib NS, Chan KG, et al. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front Microbiol 2015a; 6: 1-15.

Law JWF, Ab Mutalib NS, Chan KG, et al. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015b; 5: 1-19.

Wang R, Zhong Y, Gu X, et al. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6: 1-13.

Baker-Austin C, Trinanes J, Gonzalez-Escalona N & Martinez-Urtaza, J. Non-Cholera vibrios: the microbial barometer of climate change. Trends Microbiol. 25, 76–84 (2017).

Abd-Elghany SM, Sallam KI. Occurrence and molecular identification of Vibrio parahaemolyticus in retail shellfish in Mansoura, Egypt. Food Cont 2013; 33: 399-405.

Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States-Major pathogens. Emerg Infect Dis 2011; 17: 7-15.

Huang JY, Henao OL, Griffin PM, et al. Infection with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance – Foodborne diseases active surveillance network, 10 U.S. sites, 2012-2015. Morbidity and Mortality Weekly Report (MMWR) 2016; 65: 368-371.

Zhang L, Orth K. Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 2013; 16: 70-77.

Daniel R, Yoo J, Fratamico R, et al. Two Cases of Vibrio Infection and Sepsis in the Delaware Estuary. The Medicine Forum 2016; 17: 1-2.

Thompson FL, Iida T, Swings J. Biodiversity of Vibrios. Microbiol. Mol. Biol Rev. 2004; 68: 403-431.

Lippi D, Gotuzzo E. The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 2014; 20: 191-195.

Sawabe T, Ogura Y, Matsumura Y, et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 2013; 4: 414-424.

Austin B. Vibrios as causal agents of zoonoses. Veterinary Microbiol 2010; 140: 310-317.

Batz MB, Hoffmann S, Morris Jr JG. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Protect 2012; 75(7): 1278-1291.

Fujino T, Okuno Y, Nakada D, et al. On the bacteriological examination of shirasu food poisoning. Medic J Osaka University 1953; 4: 299-304.

Shinoda S. Sixty years from the discovery of Vibrio parahaemolyticus and some recollections. Biocontrol Sci 2011; 16: 129-137.

Odeyemi OA, Stratev D. Occurrence of antimicrobial resistant or pathogenic Vibrio parahaemolyticus in seafood. A mini review. Revue de Médecine Vétérinaire 2016; 67: 93-98.

Su YC, Liu C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiology 2007; 24(6): 549-558.

Aberoumand AU. Occurrence and pathogenic vibrios in the marine environment of potentially pathogenic the straits of Messina, Italy. World J Fish Mar Sci 2010; 3: 376-382.

Kubota K, Kasuga F, Iwasaki E, et al. Estimating the burden of acute gastroenteritis and foodborne illness caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by using population-based telephone survey data, Miyagi Prefecture, Japan, 2005 to 2006. J Food Protect 2011; 74: 1592-1598.

Hara-Kudo Y, Sugiyama K, Nishibuchi M, et al. Prevalence of pandemic thermostable direct hemolysin-producing Vibrio parahaemolyticus O3:K6 in seafood and the coastal environment in Japan. App Environ Microbiol 2003; 69: 3883-3891.

Hara-Kudo Y, Saito S, Ohtsuka K, et al. Characteristics of a sharp decrease in Vibrio parahaemolyticus infections and seafood contamination in Japan. Intern J Food Microbiol 2012; 157(1): 95-101.

Yu WT, Jong KJ, Lin YR, et al. Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan. Intern J Food Microbiol 2013; 160: 185-192.

Li YH, Xie X, Shi X, et al. Vibrio parahaemolyticus, Southern coastal region of China, 2007-2012. Emerg Infect Dis 2014; 20(4): 685-688.

Bhuiyan NA, Ansaruzzaman M, Kamruzzaman M, et al. Prevalence of the pandemic genotype of Vibrio parahaemolyticus in Dhaka, Bangladesh, and significance of its distribution across different serotypes. J Clin Microbiol 2002; 40: 284-286.

Alam MJ, Tomochika KI, Miyoshi SI, et al. Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiol Lett 2002; 208: 83-87.

Toyofuku H. Vibrio parahaemolyticus risk management in Japan. In G. Sauve (Ed.), Molluscan Shellfish Safety (pp. 129-136). New York, NY: Springer. 2014.

Wu Y, Wen J, Ma Y, et al. Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus, China, 2003-2008. Food Cont 2014; 46: 197-202.

Liu X, Chen Y, Wang X, et al. Foodborne disease outbreaks in China from 1992 to 2001 – National foodborne surveillance system. J Hyg Res 2004; 33: 725-727.

Wong HC, Liu SH, Wang TK, et al. Characterization of Vibrio parahaemolyticus O3:K6 from Asia. App Environ Microbiol 2000b; 66: 3981-3986.

Matsumoto C, Okuda J, Ishibashi M, et al. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J Clin Microbiol 2000; 38: 578-585.

Vandy S, Leakhann S, Phalmony H, et al. Vibrio parahaemolyticus enteritis outbreak following a wedding banquet in a rural village – Kampung Speu, Cambodia. Western Pac Surveill Response J 2012; 3(4): 25-28

Thongjun J, Mittraparp-Arthorn P, Yingkajorn M, et al. The trend of Vibrio parahaemolyticus infection in Southern Thailand from 2006-2012. Trop Medic Intern Health 2013; 41(4): 151-156.

Yano Y, Hamano K, Satomi M, et al. Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Cont 2014; 38: 30-45.

Al-Othrubi SMY, Kqueen CY, HMirhosseini CY, et al. Antibiotic resistance of Vibrio parahaemolyticus isolated from cockles and shrimp sea food marketed in Selangor, Malaysia. Clin Microbiol 2014; 3: 148-154.

Cann DC, Taylor LY, Merican Z. A study of the incidence of Vibrio parahaemolyticus in Malaysian shrimp undergoing processing for export. Epidemiol Infect 1981; 87(3): 485-491.

Bilung LM, Radu S, Bahaman AR, et al. Detection of Vibrio parahaemolyticus in cockle (Anadara granosa) by PCR. FEMS Microbiol Lett 2005; 252: 85-88.

Sujeewa AKW, Norrakiah AS, Laina M. Prevalence of toxic genes of Vibrio parahaemolyticus in shrimps (Penaeus monodon) and culture environment. Intern Food Res J 2009; 16: 89-95.

Noorlis A, Ghazali FM, Cheah YK, et al. Antibiotic resistance and biosafety of Vibrio cholerae and Vibrio parahaemolyticus from freshwater fish at retail level. Intern Food Res J 2011; 18(4): 1523-1530.

Sani NA, Ariyawansa S, Babji AS, et al. The risk assessment of Vibrio parahaemolyticus in cooked black tiger shrimps (Penaeus monodon) in Malaysia. Food Cont 2013; 31(2): 546-552.

Paydar M, Teh CSJ, Thong KL. Prevalence and characterization of potentially virulent Vibrio parahaemolyticus in seafood in Malaysia using conventional methods, PCR and REP-PCR. Food Cont 2013; 32: 13-18.

Nakaguchi Y. Contamination by Vibrio parahaemolyticus and its virulent strains in seafood marketed in Thailand, Vietnam, Malaysia, and Indonesia. Trop Medic Health 2013; 41: 95-102.

Wong HC, Liu SH, Ku LW, et al. Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. J Food Protect 2000a; 63(7): 900-906.

Lee WC, Lee MJ, Kim JS, et al. Foodborne illness outbreaks in Korea and Japan studied retrospectively. J Food Protect 2001; 64: 899-902.

Dileep V, Kumar HS, Kumar Y, et al. Application of polymerase chain reaction for detection of Vibrio parahaemolyticus associated with tropical seafood and coastal environment. Lett App Microbiol 2003; 36: 423-427.

Nordstrom JL, Vickery MC, Blackstone GM, et al. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. App Environ Microbiol 2007; 73: 5840-5847.

Sahilah AM, Laila RA, Sallehuddin HM, et al. Antibiotic resistance and molecular typing among cockle (Anadara granosa) strains of Vibrio parahaemolyticus by polymerase chain reaction (PCR)-based analysis. World J Microbiol Biotech 2014; 30: 649-659.

Tanil GB, Radu S, Nishibuchi M, et al. Characterization of Vibrio parahaemolyticus isolated from coastal seawater in peninsular Malaysia. Southeast Asian J Trop Med Public Health 2005; 36(4): 940-948.

Elexson N, Afsah-Hejri L, Rukayadi Y, et al. Effect of detergents as antibacterial agents on biofilm of antibiotics-resistant Vibrio parahaemolyticus isolates. Food Cont 2014; 35: 378-385.

Lee LH, Ab Mutalib NS, Law JW, et al. Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Front Microbiol 2018; 9: 2513.

Lee LH, Raghunath P. Vibrionaceae diversity, multidrug resistance and management. Front Microbiol 2018; 9: 563.

Tan CW, Malcolm TTH, Kuan CH, et al. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from short mackerels (Rastrelliger brachysoma) in Malaysia. Front Microbiol 2017; 8: 1-9.

Sudha S, Mridula C, Silvester R, et al. Prevalence and antibiotic resistance of pathogenic Vibrios in shellfishes from Cochin market. Indian J Mar Sci 2014; 43: 815-824.

Ceccarelli D, Hasan NA, Hug A, et al. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol 2013; 3: 1-9.

Ramamurthy T, Nair GB. Bacteria: Vibrio parahaemolyticus. Encyclopedia of Food Safety, 2014; 1: 555-563.

Pazhani GP, Bhowmik SK, Ghosh S, et al. Trends in the epidemiology of pandemic and non-pandemic strains of Vibrio parahaemolyticus isolated from diarrheal patients in Kolkata, India. PLoS Neglected Trop Dis 2014; 8: 2815-2825.

Kanungo S, Sur D, Ali M, et al. Clinical, epidemiological, and spatial characteristics of Vibrio parahaemolyticus diarrhea and cholera in the urban slums of Kolkata, India. BMC Pub Health 2012; 12: 830-840.

Reyhanath PV, Kutty R. Incidence of multidrug resistant Vibrio parahaemolyticus isolated from Ponnani, India. Iranian J Microbiol 2014; 6: 60-67.

Okuda J, Ishibashi M, Hayakawa E, et al. Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol 1997; 35: 3150-3155.

Miwatani T, Takeda Y. (Eds.). Vibrio parahaemolyticus: A causative bacterium of food poisoning. Tokyo: Saikon. 1976.

Aldova E, Zakhariev ZA, Dinev TS, et al. Vibrio parahaemolyticus in the Black Sea. Zentralbl Bakteriol B 1971; 218(2): 176-88.

Papa F. Study and significance of Vibrio parahaemolyticus in the coastal waters of Guadeloupe. Bull Soc Pathol Exot Filiales 1980; 73: 380-383.

Qadri F, Chowdhury NR, Takeda Y, et al. Vibrio parahaemolyticus – Seafood safety and associations with higher organisms. In S. Belkin & R. R. Colwell (Eds.), Oceans and Health: Pathogens in the Marine Environment (pp. 277-295). New York, NY: Springer 2005.

Serracca L, Battistini R, Rossini I, et al. Vibrio virulence genes in fishes collected from estuarine waters in Italy. Lett App Microbiol 2011; 53(4): 403-408.

Molero X, Bartolome´ RM, Vinuesa T, et al. Acute gastroenteritis due to Vibrio parahaemolyticus in Spain: presentation of 8 cases. Med Clin (Barc) 1989; 92: 1–4.

Robert-Pillot A, Guenole A, Lesne J, et al. Occurrence of the tdh and trh genes in Vibrio parahaemolyticus isolates from waters and raw shellfish collected in two French coastal areas and from seafood imported into France. Intern J Food Microbiol 2004; 91: 319-325.

Lozano-Leon A, Torres J, Osorio CR, et al. Identification of tdh-positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. FEMS Microbiol Lett 2003; 226: 281-284.

Martinez-Urtaza J, Simental L, Velasco D, et al. Pandemic Vibrio parahaemolyticus O3:K6, Europe. Emerg Infect Dis J 2005; 11: 1319-1320.

Wagley S, Koofhethile K, Wing JB, et al. Comparison of V. parahaemolyticus isolated from seafoods and cases of gastrointestinal disease in the UK. Intern J Environ Health Res 2008; 18(4): 283-293.

Ottaviani D, Leoni F, Rocchegiani E, et al. First clinical report of pandemic Vibrio parahaemolyticus O3:K6 infection in Italy. J Clin Microbiol 2008; 46: 2144-2145.

Ottaviani D, Leoni F, Roccehegiani E, et al. Prevalence, serotyping and molecular characterization of Vibrio parahaemolyticus in mussels from Italian growing areas, Adriatic Sea. Environ Microbiol Rep 2010; 2(1): 92-197.

Molenda JR, Johnson WG, Fishbein M, et al. Vibrio parahaemolyticus gastroenteritis in Maryland: Laboratory aspects. App Microbiol 1972; 24: 444-448.

Daniels NA, MacKinnon L, Bishop R, et al. Vibrio parahaemolyticus infection in the United States, 1973-1998. J Infect Dis 2000; 181: 1661-1666.

Centres for Disease Control and Prevention (CDC). Outbreak of Vibrio parahaemolyticus infection associated with eating raw oysters and clams harvested from Long Island Sound-Connecticut, New Jersey and New York, 1998. Morb Mortal Wkly Rep 1999; 48: 48-51.

McLaughlin JB, DePaola A, Bopp CA, et al. Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. New Eng J Medic 2005;353(14): 1463-1470.

DePaola A, Kaysner CA, Bowers J, et al. Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). App Environ Microbiol 2000; 66: 4649-4654.

Newton A, Kendall M, Vugia DJ, et al. Increasing rates of vibriosis in the United States, 1996-2010: Review of surveillance data from 2 systems. Clin Infect Dis 2012; 54: 391-395.

Centers for Disease Control and Prevention (CDC). Vibrio parahaemolyticus Infections associated with consumption of raw shelfish at three states, 2006. Morb Mort Wkly Rep 2006; 55: 1-2.

Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005; 36: 697-705.

Zhang R, Pan L, Zhao Z. High incidence of plasmids in marine Vibrio species isolated from Mai Po Nature Reserve of Hong Kong. Ecotoxicology 2012; 21: 1661-1668.

Letchumanan V, Ab Mutalib NS, Wong SH, et al. Determination of antibiotic resistance patterns of Vibrio parahaemolyticus from shrimp and shellfish in Selangor, Malaysia. Prog Microbes Mol Biol; 2019;1(1).

Kim M, Kwon TH, Jung SM, et al. Antibiotic resistance of bacteria isolated from the internal organs of edible snow crabs. PLoS ONE 2013; 8: 1-10.

Shrestha UT, Adhikari N, Maharjan R, et al. Multidrug resistant Vibrio cholerae 01 from clinical and environmental samples in Kathmandu city. BMC Infect 2015; 15: 1-7.

Khan WA, Saha D, Ahmed S, et al. Efficacy of ciprofloxacin for treatment of cholera associated with diminished susceptibility to ciprofloxacin to Vibrio cholerae O1. PloS ONE 2015; 10: 1-11.

Martinez JL. Recent advances on antibiotic resistance genes. In M. Fingerman & R. Nagabhushanam (Eds.), Recent Advances in Marine Biotechnology (pp. 13-32). Boca Raton: CRC Press. 2003.

Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 2014; 22(1): 36-41.

Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ Microbiol 2006; 8: 397-414.

Baquero F, Martinez JL, Canton R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 2008; 19: 260-265.

World Health Organization (WHO). Food Safety (Ed.). Switzerland: WHO. 2017.

Letchumanan V, Chan KG, Khan TM, et al. Bile Sensing: The activation of Vibrio parahaemolyticus virulence. Front Microbiol 2017; 8(728): 1-6.

Wang S, Zhang Z, Malakar PK, Pan Y, Zhao Y. The fate of bacteria in human digestive fluids: A new perspective into the pathogenesis of Vibrio parahaemolyticus. Frontiers in Microbiology. 2019;10:1614.

Raghunath P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front Microbiol 2015; 5: 1-4.

Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis 2008; 197: 1079-1081.

Freire-Moran L, Aronsson B, Manz C, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria – Time to react is now. Drug Resis Updates 2011; 14(2): 118-124.

Carlet J, Collignon P, Goldmann D, et al. Society's failure to protect a precious resource: Antibiotics. The Lancet 2011; 378(9788): 369-371.

Vinod MG, Shivu MM, Umesha KR, et al. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aqua 2006; 255: 117-124.

Karunasagar I, Shivu MM, Girisha SK, et al. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aqua 2007; 268: 288-292.

Bren L. Bacteria eating virus approved as food additive. FDA Consumer 2007; 41: 20-22.

Coffey B, Mills S, Coffey A, et al. Phage and their lysins as biocontrol agents for food safety applications. Annual Rev Food Sci Tech 2010; 1: 449-468.

Hagens S, Loessner M. Bacteriophage for biocontrol of foodborne pathogens: Calculations and considerations. Curr Pharm Biotech 2010; 11(1): 58-68.

Jassim SAA. Limoges, RG. Natural solution to antibiotic resistance: Bacteriophages – the living drugs. World J Microbiol Biotech 2014; 30: 2153-2170.

Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J Infect Develop Count 2014; 8(02): 129-136.

Letchumanan V, Chan KG, Pusparajah P, et al. Insights into bacteriophage application in controlling Vibrio species. Front Microbiol 2016; 7: 1114.

Salisbury V, Hedges RW, Datta N. Two modes of 'curing' transmissible plasmids. J Gen Microbiol 1972; 70: 443-452.

Kamat AS. Nair, CKK. Evidence for plasmid-mediated toxin production in Bacillus cereus BIS-59. World J Microbiol Biotech 1992; 8: 210-211.

Barman S, Chatterjee S, Chowdhury G, et al. Plasmid-mediated streptomycin and sulfamethoxazole resistance in Shigella flexneri 3a. Inter J Antimicrob Agents 2010; 36: 348-351.

Reboucas RH, Viana de Sousa O, Sousa Lima A, et al. Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Cear´a, Brazil. Environ Res 2011; 111: 21-24.

Carvalho FC, Sousa OV, Carvalho EM, et al. Antibiotic resistance of Salmonella spp. isolated from shrimp farming freshwater environment in Northeast region of Brazil. J Path 2013; 2013: 1-5.

Costa RA, Araujo RL, Souza OV, et al. Antibiotic-resistant Vibrios in farmed shrimp. BioMed Res Inter 2014; 2014: 2-5.

Letchumanan, V, Chan KG, Lee LH. An insight of traditional plasmid curing in Vibrio species. Front Microbiol 2015; 6: 735.

Letchumanan, V, Ser HL, Chan KG, et al. Genome sequence of Vibrio parahaemolyticus VP103 strain isolated from shrimp in Malaysia. Front Microbiol 2016; 7: 1496.

Letchumanan, V, Ser HL, Tan WS, et al. Genome sequence of Vibrio parahaemolyticus VP152 strain isolated from Penaeus indicus in Malaysia. Front Microbiol 2016; 7: 1410.

Letchumanan V, Wong PC, Goh BH, et al. A review on the characteristics, taxanomy and prevalence of Listeria monocytogenes. Prog Microbes Mol Biol 2018; 1(1).


  • There are currently no refbacks.

Copyright (c) 2019 Vengadesh Letchumanan, Ke-Yan Loo, Jodi Woan-Fei Law, Sunny Hei Wong, Bey-Hing Goh, Nurul-Syakima Ab Mutalib, Learn-Han Lee

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.