Nanomedicine in Oncology: A Critical Review on Epidemiology, Health Impacts, Challenges, and Future Outlook
DOI:
https://doi.org/10.36877/pddbs.a0000489Abstract
Cancer remains a leading public health issue globally due to its increasing morbidity rate, with cancer cases predicted to double over the next 20 years. While current conventional treatments are the primary go-to in treating cancers, they still present ineffective due to adverse side effects, poor targeting, and drug resistance. In recent years, nanomedicines have emerged as a better alternative for cancer treatment in maximizing drug delivery, bioavailability, and therapeutic efficacy through passive and active mechanisms. Despite having high potential, the poor clinical translations and recent fund retractions have led to limited progress in cancer nanomedicine. Thus, this review aims to review and identify the role of nanomedicine in oncology by analyzing the involved epidemiological populations, potential health impacts, possible outcomes, and current challenges in terms of economic, environmental, and ethical aspects. Further outlooks in improving nanomedicine therapeutic efficacy are also discussed, including switching approaches to nanomedicine development, modifying current regulatory guidelines, and providing training programs.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Teh Coey
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This broad license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
The author(s) permits HH Publisher to publish this article that has not been submitted elsewhere.