Cover Image

The Bioprospecting of Anti-Vibrio Streptomyces species: Prevalence and Applications

Loh Teng-Hern Tan, Learn-Han Lee, Bey-Hing Goh Abstract - 1583 PDF - 45


Vibrio sp. has been a major pathogen that resulted in difficult to treat infections, and greatly impacting the aquaculture industry. Thus, more effective approaches are needed to overcome this problem. Bacteria of the genus Streptomyces is a group of prolific producers for various bioactive compounds. Streptomyces species with antibacterial activity against Vibrio sp. have been reported from numerous studies, indicating that Streptomyces could be a good candidate for treatment of Vibrio infections. This review aims to provide an overview on the distribution of the Streptomyces with anti-Vibrio activity from diverse geographical locations. Furthermore, this review also highlighted that Streptomyces sp. can be a great source for anti-Vibrio agents to control vibriosis, such as in the aquaculture settings.

Full Text:



Hixson SM, Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J Aquac Res Dev 2014; 5(234): 2.

Law JW-F, Ab Mutalib N-S, Chan K-G, et al., Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5: 770.

Law JW-F, Ab Mutalib N-S, Chan K-G, et al., An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front Microbiol 2015; 6: 1227.

Cheah Y-K, Salleh NA, Lee L-H, et al., Comparison of PCR fingerprinting techniques for the discrimination of Salmonella enterica subsp. enterica serovar Weltevreden isolated from indigenous vegetables in Malaysia. World J Microbiol Biotechnol 2008; 24(3): 327.

Khoo C-H, Cheah Y-K, Lee L-H, et al., Virulotyping of Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry meat in Malaysia using multiplex-PCR. Antonie Van Leeuwenhoek 2009; 96(4): 441.

Lee LH, Cheah YK, Shiran M, et al., Molecular characterization and antimicrobial resistance profiling of Salmonella enterica subsp. enterica isolated from ‘Selom’(Oenanthe stolonifera). Int Food Res J 2009; 16(1): 191-202.

Eng S-K, Pusparajah P, Ab Mutalib N-S, et al., Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015; 8(3): 284-293.

Letchumanan V, Yin WF, Lee LH, et al., Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 2015; 6: 33.

Heng S-P, Letchumanan V, Deng C-Y, et al., Vibrio vulnificus: an environmental and clinical burden. Front Microbiol 2017; 8: 997.

Law JWF, Letchumanan V, Chan KG, et al., Insights into detection and identification of foodborne pathogens. Edited by Om V. Singh. Food Borne Pathogens and Antibiotic Resistance. WILEY Blackwell 2016.

Letchumanan V, Wong P-C, Goh B-H, et al., A review on the characteristics, taxanomy and prevalence of Listeria monocytogenes. Prog Microb Mol Biol 2018; 1(1).

Garrido-Maestu A, Lozano-León A, Rodríguez-Souto RR, et al., Presence of pathogenic Vibrio species in fresh mussels harvested in the southern Rias of Galicia (NW Spain). Food Control 2016; 59: 759-765.

Hou CC, Lai CC, Liu WL, et al., Clinical manifestation and prognostic factors of non-cholerae Vibrio infections. Eur J Clin Microbiol Infect Dis 2011; 30(6): 819-24.

Horseman MA and Surani S, A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis 2011; 15(3): e157-66.

Letchumanan V, Chan KG, and Lee LH, Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 2014; 5: 705.

Senderovich Y, Izhaki I, and Halpern M, Fish as reservoirs and vectors of Vibrio cholerae. PLoS One 2010; 5(1): e8607-e8607.

Tack DM, Marder EP, Griffin PM, et al., Preliminary incidence and trends of infections with pathogens transmitted commonly through food Foodborne Diseases Active Surveillance Network, 10 US sites, 2015–2018. Morbidity and Mortality Weekly Report 2019; 68(16): 369.

Díaz-Quiñonez A, Hernández-Monroy I, Montes-Colima N, et al., Notes from the Field: Outbreak of Vibrio cholerae Serogroup O1, Serotype Ogawa, Biotype El Tor Strain—La Huasteca Region, Mexico, 2013. MMWR Morb Mortal Wkly Rep 2014; 63(25): 552-553.

Kumar P, Mishra DK, Deshmukh DG, et al., Vibrio cholerae O1 Ogawa El Tor strains with the ctxB7 allele driving cholera outbreaks in southwestern India in 2012. Infect Genet Evol 2014; 25: 93-6.

Ma C, Deng X, Ke C, et al., Epidemiology and etiology characteristics of foodborne outbreaks caused by Vibrio parahaemolyticus during 2008 2010 in Guangdong province, China. Foodborne Pathog Dis 2014; 11(1): 21-9.

Centers for Disease Control Prevention, Notes from the field: Identification of Vibrio cholerae serogroup O1, serotype Inaba, biotype El Tor strain-Haiti, March 2012. MMWR Morb Mortal Wkly Rep 2012; 61(17): 309.

Shruti C, Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Marine Sci Res Dev 2012.

Austin B and Zhang XH, Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 2006; 43(2): 119-24.

Karunasagar I, Pai R, Malathi G, et al., Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 1994; 128(3): 203-209.

Lavilla-Pitogo CR, Baticados MCL, Cruz-Lacierda ER, et al., Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 1990; 91(1): 1-13.

Geng Y, Liu D, Han S, et al., Outbreaks of vibriosis associated with Vibrio mimicus in freshwater catfish in China. Aquaculture 2014; 433: 82-84.

Lalumera GM, Calamari D, Galli P, et al., Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere 2004; 54(5): 661-668.

Acharyya S, Patra A, and Bag PK, Evaluation of the antimicrobial activity of some medicinal plants against enteric bacteria with particular reference to multi-drug resistant Vibrio cholerae. Trop J Pharm Res 2009; 8(3).

Tan LTH, Lee LH, Yin WF, et al., Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid Based Complement Alternat Med 2015; 2015.

Chan W-K, Tan L, Chan K-G, et al., Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016; 21(5): 529.

Tang C, Hoo PC-X, Tan LT-H, et al., Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol 2016; 7: 474.

Ma DS, Tan LT-H, Chan K-G, et al., Resveratrol—potential antibacterial agent against foodborne pathogens. Front Pharmacol 2018; 9: 102.

Kobayashi J and Ishibashi M, Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 1993; 93(5): 1753-1769.

Dharmaraj S, Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 2010; 26(12): 2123-2139.

Hong K, Gao A-H, Xie Q-Y, et al., Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs

; 7(1): 24-44.

Ser H-L, Tan W-S, Cheng H-J, et al., Draft genome of amylolytic actinobacterium, Sinomonas humi MUSC 117T isolated from intertidal soil. Mar Genomics 2015; 24: 209-210.

Lee L-H, Cheah Y-K, Sidik SM, et al., Barrientosiimonas humi gen. nov., sp. nov., an actinobacterium of the family Dermacoccaceae. Int J Syst Evol Microbiol 2013; 63(1): 241-248.

Tan LT-H, Chan K-G, Chan CK, et al., Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. Biomed Res Int 2018; 2018.

Tan LTH, Mahendra CK, Yow YY, et al., Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. Microbiologyopen 2019: e859.

Lee L-H, Zainal N, Azman A-S, et al., Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. ScientifcWorldJournal 2014; 2014.

Lee L-H, Zainal N, Azman A-S, et al., Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillinresistant Staphylococcus aureus. Int J Syst Evol Microbiol 2014; 64(Pt9): 3297-3306.

Ser H-L, Palanisamy UD, Yin W-F, et al., Presence of antioxidative agent, Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol 2015; 6: 854.

Ser HL, Zainal N, Palanisamy UD, et al., Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil. Antonie Van Leeuwenhoek 2015; 107(6): 1369-78.

Schatz A, Bugle E, and Waksman SA, Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative

Bacteria.∗†. Exp Biol Med 1944; 55(1): 66-69.

Manivasagan P, Venkatesan J, Sivakumar K, et al., Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 2013; 168(6): 311-32.

Tan LT-H, Chan K-G, Pusparajah P, et al., Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticoloncancer agents. BMC Microbiol 2019; 19(1): 38.

Nair AG, Selvakumar D, and Dhevendaran K, Occurrence of sponges associated Streptomyces and its antimicrobial activity. World J Fish Mar Sci 2011; 3: 151-158.

Schrey SD and Tarkka MT, Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 2008; 94(1): 11-19.

Kaltenpoth M, Yildirim E, Gurbuz MF, et al., Refining the roots of the beewolf-Streptomyces symbiosis: antennal symbionts in the rare genus Philanthinus (Hymenoptera, Crabronidae). Appl Environ Microbiol 2012; 78(3): 822-7.

Farmer III J and Hickman-Brenner F, The genera Vibrio and photobacterium, in The prokaryotes. 2006, Springer. p. 508-563.

Pruzzo C, Gallo G, and Canesi L, Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environ Microbiol 2005; 7(6): 761-772.

Letchumanan V, Yin W-F, Lee L-H, et al., Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 2015; 6: 33.

Johnson CN, Fitness factors in vibrios: a mini-review. Microb Ecol 2013; 65(4): 826-51.

Haan Ld and Hirst TR, Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 2004; 21(2): 77-92.

Jones MK and Oliver JD, Vibrio vulnificus: disease and pathogenesis. Infect Immun 2009; 77(5): 1723-1733.

Schauder S and Bassler BL, The languages of bacteria. Genes Dev 2001; 15(12): 1468-1480.

Miller MB, Skorupski K, Lenz DH, et al., Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 2002; 110(3): 303-314.

Lupp C and Ruby EG, Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol 2005; 187(11): 3620-3629.

Verschuere L, Rombaut G, Sorgeloos P, et al., Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 2000; 64(4): 655-671.

Letchumanan V, Loo KY, Law JWF, et al., Vibrio parahaemolyticus: the protagonist causing foodborne diseases. Prog Microbes Mol Biol 2019;

(1): a0000029.

Letchumanan V, Chan K-G, and Lee L-H, An insight of traditional plasmid curing in Vibrio species. Front Microbiol 2015; 6: 735.

Holmström K, Gräslund S, Wahlström A, et al., Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 2003; 38(3): 255-266.

Letchumanan V, Chan KG, and Lee LH, An insight of traditional plasmid curing in Vibrio species. Front Microbiol 2015; 6: 735.

Lee L-H, Ab Mutalib N-S, Law JW-F, et al., Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Front Microbiol 2018; 9: 2513.

Cheah YK, Lee LH, Noorzaleha AS, et al., Characterization of multiple- antimicrobial-resistant Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry in Malaysia. Lett Appl Microbiol 2008; 46(3): 318-324.

Lee LH, Cheah YK, Salleh NA, et al., Analysis of Salmonella Agona and Salmonella Weltevreden in Malaysia by PCR fingerprinting and antibiotic resistance profiling. Antonie Van Leeuwenhoek 2008; 94(3): 377.

Roque A, Molina-Aja A, Bolan-Mejia C, et al., In vitro susceptibility to 15 antibiotics of vibrios isolated from penaeid shrimps in Northwestern Mexico. Int J Antimicrob Agents 2001; 17(5): 383-7.

Tendencia EA and de la Peña LD, Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 2001; 195(3): 193-204.

Zou S, Xu W, Zhang R, et al., Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environ Pollut 2011; 159(10): 2913-20.

Lee L-H and Raghunath P, Vibrionaceae diversity, multidrug resistance and management. Front Microbiol 2018; 9: 563.

Albuquerque Costa R, Araujo RL, Souza OV, et al., Antibiotic-resistant vibrios in farmed shrimp. Biomed Res Int 2015; 2015: 505914.

Han JE, Mohney LL, Tang KF, et al., Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. Aquacult Rep 2015; 2: 17-21.

Leaño EM and Mohan C, Early mortality syndrome threatens Asia’s shrimp farms. Global Aquac Advocate 2012; 15(4): 38-39.

Lightner D, Redman R, Pantoja C, et al., Early mortality syndrome affects shrimp in Asia Global Aquac Alliance 2012: 40.

Castillo D, Jun JW, D’Alvise P, et al., Draft Genome Sequence of Vibrio parahaemolyticus VH3, Isolated from an Aquaculture Environment in Greece. Genome Announc 2015; 3(4): e00731-15.

Jun JW, Kim JH, Choresca Jr CH, et al., Isolation, molecular characterization, and antibiotic susceptibility of Vibrio parahaemolyticus in Korean seafood. Foodborne Pathog Dis 2012; 9(3): 224-231.

Letchumanan V, Pusparajah P, Tan LTH, et al., Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from Shellfish in Selangor, Malaysia. Front Microbiol 2015; 6: 1417.

Chao G, Jiao X, Zhou X, et al., Serodiversity, pandemic O3: K6 clone, molecular typing, and antibiotic susceptibility of foodborne and clinical Vibrio parahaemolyticus isolates in Jiangsu, China. Foodborne Pathog Dis 2009; 6(8): 1021-1028.

Xu X, Cheng J, Wu Q, et al., Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol 2016; 16(1): 1.

Miwanda B, Moore S, Muyembe JJ, et al., Antimicrobial Drug Resistance of Vibrio cholerae, Democratic Republic of the Congo. Emerg Infect Dis 2015; 21(5): 847-51.

Kitaoka M, Miyata ST, Unterweger D, et al., Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 2011; 60(Pt 4): 397-407.

Glass RI, Huq MI, Lee JV, et al., Plasmid-borne multiple drug resistance in Vibrio cholerae serogroup O1, biotype El Tor: evidence for a point-source outbreak in Bangladesh. J Infect Dis 1983; 147(2): 204-9.

Garg P, Chakraborty S, Basu I, et al., Expanding multiple antibiotic resistance among clinical strains of Vibrio cholerae isolated from 1992–7 in Calcutta, India. Epidemiol Infect 2000; 124(03): 393-399.

Dalsgaard A, Forslund A, Sandvang D, et al., Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multipledrug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons. J Antimicrob Chemother 2001; 48(6): 827-38.

Sjolund-Karlsson M, Reimer A, Folster JP, et al., Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis 2011; 17(11): 2151-4.

Tran HD, Alam M, Trung NV, et al., Multi-drug resistant Vibrio cholerae O1 variant El Tor isolated in northern Vietnam between 2007 and 2010. J Med Microbiol 2012; 61(3): 431-437.

Roychowdhury A, Pan A, Dutta D, et al., Emergence of tetracyclineresistant Vibrio cholerae O1 serotype Inaba, in Kolkata, India. Jpn J Infect Dis 2008; 61(2): 128-9.

Petroni A, Corso A, Melano R, et al., Plasmidic extended-spectrum beta-lactamases in Vibrio cholerae O1 El Tor isolates in Argentina. Antimicrob Agents Chemother 2002; 46(5): 1462-8.

Khan WA, Saha D, Ahmed S, et al., Efficacy of ciprofloxacin for treatment of cholera associated with diminished susceptibility to ciprofloxacin to Vibrio cholerae O1. PLoS One 2015; 10(8): e0134921.

Dalsgaard A, Forslund A, Tam NV, et al., Cholera in Vietnam: changes in genotypes and emergence of class I integrons containing aminoglycoside resistance gene cassettes in vibrio cholerae O1 strains isolated from 1979 to 1996. J Clin Microbiol 1999; 37(3): 734-41.

Meibom KL, Blokesch M, Dolganov NA, et al., Chitin induces natural competence in Vibrio cholerae. Science 2005; 310(5755): 1824-7.

Waldor MK, Tschape H, and Mekalanos JJ, A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 1996; 178(14): 4157-65.

Burrus V, Marrero J, and Waldor MK, The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 2006; 55(3): 173-83.

Wang R, Yu D, Yue J, et al., Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci Rep 2016; 6: 22733.

Spellberg B and Shlaes D, Prioritized current unmet needs for antibacterial therapies. Clin Pharmacol Ther 2014; 96(2): 151-3.

Bush K, Courvalin P, Dantas G, et al., Tackling antibiotic resistance. Nat Rev Microbiol 2011; 9(12): 894-6.

Flardh K and Buttner MJ, Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009; 7(1): 36-49.

Law JW-F, Tan K-X, Wong SH, et al., Taxonomic and characterization methods of Streptomyces: a review. Prog Microb Mol Biol 2018; 1(1).

Manteca A, Alvarez R, Salazar N, et al., Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 2008; 74(12): 3877-86.

Hwang KS, Kim HU, Charusanti P, et al., Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 2014; 32(2): 255-68.

van Wezel GP and McDowall KJ, The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28(7): 1311-33.

Tan LT-H, Chan K-G, Khan TM, et al., Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front Pharmacol 2017; 8: 276.

Berdy J, Bioactive microbial metabolites. J Antibiot 2005; 58(1): 1-26.

Solecka J, Zajko J, Postek M, et al., Biologically active secondary metabolites from Actinomycetes. Open Life Sci 2012; 7(3): 373-390.

Law JW-F, Pusparajah P, Ab Mutalib N-S, et al., A Review on Mangrove Actinobacterial Diversity: The Roles of Streptomyces and

Novel Species Discovery. Prog Microb Mol Biol 2019; 1(1).

Yim G, Thaker MN, Koteva K, et al., Glycopeptide antibiotic biosynthesis. J Antibiot (Tokyo) 2014; 67(1): 31-41.

Rohr J and Thiericke R, Angucycline group antibiotics. Nat Prod Rep 1992; 9(2): 103-37.

Chopra I and Roberts M, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65(2): 232-60 Kuamr R, Shrivastav AK, Singha AK.

Laursen JB and Nielsen J, Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 2004; 104(3): 1663-86.

Zhanel GG, Dueck M, Hoban DJ, et al., Review of macrolides and ketolides: focus on respiratory tract infections. Drugs 2001; 61(4): 443-98.

Kudo F and Eguchi T, Biosynthetic genes for aminoglycoside antibiotics. J Antibiot (Tokyo) 2009; 62(9): 471-81.

Syvitski RT, Borissow CN, Graham CL, et al., Ring-opening dynamics of jadomycin A and B and dalomycin T. Org Lett 2006; 8(4): 697-700.

de Leder Kremer RM and Gallo-Rodriguez C, Naturally occurring monosaccharides: properties and synthesis. Adv Carbohydr Chem Biochem 2004; 59: 9-67.

Slattery M, Rajbhandari I, and Wesson K, Competition-Mediated Antibiotic Induction in the Marine Bacterium Streptomyces tenjimariensis. Microb Ecol 2001; 41(2): 90-96.

Tan LTH, Ser HL, Yin WF, et al., Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Front Microbiol 2015; 6: 1316.

Basilio A, Gonzalez I, Vicente MF, et al., Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J Appl Microbiol 2003; 95(4): 814-23.

Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002; 417(6885): 141-7.

Ikeda H, Ishikawa J, Hanamoto A, et al., Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 2003; 21(5): 526-31.

Eppinger M, Bunk B, Johns MA, et al., Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. J Bacteriol 2011; 193(16): 4199-213.

Weber T, Charusanti P, Musiol-Kroll EM, et al., Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 2015; 33(1): 15-26.

Ser H-L, Tan W-S, Ab Mutalib N-S, et al., Genome sequence of Streptomyces pluripotens MUSC 135T exhibiting antibacterial and antioxidant activity. Mar Genomics 2015.

Kemung HM, Hern T, Loh T, et al., Streptomyces as a prominent resource of future anti-MRSA drugs. Front Microbiol 2018; 9: 2221.

Rateb ME, Houssen WE, Harrison WT, et al., Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 2011; 74(9): 1965-71.

Arasu MV, Rejiniemon TS, Al-Dhabi NA, et al., Nutritional requirements for the production of antimicrobial metabolites from Streptomyces. Aft J Microbiol Res 2014; 8(8): 750-758.

Sahu MK, Murugan M, Sivakumar K, et al., Occurrence and distribution of actinomycetes in marine environs and their antagonistic activity against bacteria that is pathogenic to shrimps. Isr J Aquacult Bamid 2007; 59(3): 155-161.

Nithya C and Pandian SK, Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production. Microbiol Res 2010; 165(7): 578-593.

Pugazhvendan SR, Kumaran S, Alagappan KM, et al., Inhibition of fish bacterial pathogens by antagonistic marine actinomycetes. Eur J Appl Sci 2010; 2(2): 41-43.

Vasanthabharathi V, Lakshminarayanan R, and Jayalakshmi S, Melanin production from marine Streptomyces. Afr J Biotechnol 2011; 10(54): 11224-11234.

Kuamr R, Shrivastav AK, Singha AK, et al., Antibiotic production from marine Strptomycyes sp. Int J Pharma Bio Sci 2012; 3(4): 331-342.

Valli S, Suvathi SS, Aysha OS, et al., Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Dis 2012; 2(6): 469-73.

Ganesan S, Velsamy G, Sivasudha T, et al., MALDI-TOF mass spectrum profiling, antibacterial and anticancer activity of marine Streptomyces fradiae BDMS1. World J Pharm Pharm Sci 2013; 2(6): 5148-5165.

Kadiri S, sastry Yarla N, and Vidavalur S, Isolation and Identification of A Novel Aporphine Alkaloid SSV, An Antitumor Antibiotic from Fermented Broth of Marine Associated Streptomyces sp. KS1908. J Marine Sci Res Dev 2013; 2013.

Meena B, Rajan LA, Vinithkumar NV, et al., Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol 2013; 13(1):145.

Mohanraj G and Sekar T, Antagonistic activity of marine Streptomyces sp LCJ94 against the shrimp pathogens. Ann Biol Res 2013; 4(4): 224-227.

Sivasankar P, Sugesh S, Vijayanand P, et al., Efficient production of lasparaginase by marine Streptomyces sp. isolated from Bay of Bengal, India. Afr J Microbiol Res 2013; 7: 4015-4021.

Dharumadurai D, Annamalai P, Nooruddin T, et al., Isolation, Characterization of Antibacterial Methyl Substituted β-Lactum Compound

from Streptomyces noursei DPTD21 in Saltpan Soil, India. J Biol Act Prod Nat 2014; 4(2): 71-88.

Sivaperumal P, Kamala K, and Rajaram R, Bioactive DOPA melanin isolated and characterised from a marine actinobacterium Streptomyces sp. MVCS6 from Versova coast. Nat Prod Res 2015; 29(22): 2117-21.

Sivaperumal P, Kamala K, Rajaram R, et al., Melanin from marine Streptomyces sp.(MVCS13) with potential effect against ornamental fish pathogens of Carassius auratus (Linnaeus, 1758). Biocatal Agric Biotechnol 2014; 3(4): 134-141.

Long L, Tian X, Li J, et al., Marine streptomyces, pyranosesquiterpene compound, as well as preparation method and applications thereof. 2012, Google Patents.

You J, Cao L, Liu G, et al., Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 2005; 21(5): 679-682.

Hieu NX, Thuan LTN, Matsumoto M, et al., Identification and characterization of Actinomycetes antagonistic to pathogenic Vibrio spp. isolated from shrimp culture pond sediments in Thua Thien Hue-Viet Nam. J Fac Agr Kyushu U 2011; 56(1): 15-22.

Chau NTT, Matsumoto M, and Miyajima I, Optimization of Medium for the Production of a Novel Aquaculture Probiotic, Streptomyces sp. A1 Using Central Composite Design of Response Surface Methodology. J Fac Agr Kyushu U 2014; 59(1): 25-32.

Cho JY and Kim MS, Antibacterial benzaldehydes produced by seaweed-derived Streptomyces atrovirens PK288-21. Fish Sci 2012; 78(5):1065-1073.

Barakat KM and Beltagy EA, Bioactive phthalate from marine Streptomyces ruber EKH2 against virulent fish pathogens. Egypt J Aquat Res 2015; 41(1): 49-56.

Bernal MG, Campa-Córdova ÁI, Saucedo PE, et al., Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet World 2015.

Das S, Ward LR, and Burke C, Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture 2010; 305(1): 32-41.

Rathnakala R and Chandrika V, Growth Inhibition of fish pathogens by antagonistic actinomycetes isolated from mangrove environment. The Fourth Indian Fisheries Forum Proceedings 1999: 337-341.

Arifuzzaman M, Khatun M, and Rahman H, Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. Afr J Biotechnol 2010; 9(29): 4615-4619.

Mohana S and Radhakrishnan M, Streptomyces sp MA7 isolated from mangrove rhizosphere sediment effective against Gram negative bacterial pathogens. Int J Pharmtech Res 2014; 6(4): 1259-1264.

Thirumurugan D and Vijayakumar R, Exploitation of Antibacterial Compound Producing Marine Actinobacteria against Fish Pathogens Isolated from Less Explored Environments. Res J Sci Technol 2013; 5(2): IV.

Thirumurugan D and Vijayakumar R, A potent fish pathogenic bacterial killer Streptomyces sp. isolated from the soils of east coast region, South India. J Coast Life Med 2013; 1(3): 175-180.

Thirumurugan D and Vijayakumar R, Characterization and structure elucidation of antibacterial compound of Streptomyces sp. ECR77 isolated from east coast of India. Curr Microbiol 2015; 70(5): 745-55.

Sengupta S, Pramanik A, Ghosh A, et al., Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol 2015; 15(1): 170.

Jayasudha J, Kumar G, Karthik L, et al., Biological control of vibriosis by antagonistic actinobacteria-an in vitro study. Int J Agric Technol 2011; 7(2): 271-280.

Reddy N, Ramakrishna D, and Raja Gopal S, A morphological, physiological and biochemical studies of marine Streptomyces rochei (MTCC10109) showing antagonistic activity against selective human pathogenic microorganisms. Asian J Biol Sci 2011; 4(1): 1-14.

Selvakumar D, Arun K, Suguna S, et al., Bioactive potential of Streptomyces against fish and shellfish pathogens. Iran J Microbiol 2010; 2(3): 157-64.

Dharmaraj S and Sumantha A, Bioactive potential of Streptomyces associated with marine sponges. World J Microbiol Biotechnol 2009; 25(11): 1971-1979.

Dharmaraj S, Antagonistic potential of marine actinobacteria against fish and shellfish pathogens. Turk J Biol 2011; 35(3): 303-311.

Su P, Wang DX, Ding SX, et al., Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp. from the coast of Fujian, China. Can J Microbiol 2014; 60(4): 217-25.

ElAhwany AM, Ghozlan HA, ElSharif HA, et al., Phylogenetic diversity

and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J Basic Microbiol 2015; 55(1): 2-10.

Nithyanand P, Manju S, and Pandian SK, Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Lett 2011; 314(2): 112-118.

Zhang X-Y, He F, Wang G-H, et al., Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals. World J Microbiol Biotechnol 2013; 29(6): 1107-1116.

Li J, Dong J-D, Yang J, et al., Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes. Antonie Van Leeuwenhoek 2014; 106(4): 623-635.

Sheeja M, Selvakumar D, and Dhevendaran K, Antagonistic potential of Streptomyces associated with the gut of marine ornamental fishes. Middle East J Sci Res 2011; 7(3): 327-334.

Deepa S, Bharathidasan R, and Panneerselvam A, Studies on isolation of nutritional grouping streptomycetes from fishes. Adv Appl Sci Res 2012; 3(2): 895-899.

Suguna S, Antagonistic study on Streptomyces spp isolated from marine fish and its antibiogram spectrum against human and fish pathogens. Int J Pharm Biol Arch 2012; 3(3).

Zheng Z, Zeng W, Huang Y, et al., Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol Lett 2000; 188(1): 87-91.

Sridevi K and Dhevendaran K, Genetic analysis of antibiotic production and other phenotypic traits from Streptomyces associated with seaweeds. Afr J Biotechnol 2014; 13(26): 2648.

Sridevi K and Dhevendaran K, Evaluation of Streptomyces as probiotics against vibriosis and health management of prawn larvae Macrobrachium rosenbergii. Afr J Microbiol Res 2014; 8(41): 3595-3603.

Sridevi K and Dhevendaran K, Streptomycetes from marine seaweeds: their antimicrobial and antibiotic potential Int J Appl Biol Pharm 2014; 5(4): 74-79.

Bonjar GS, Broadspectrim, a novel antibacterial from Streptomyces sp. Biotechnology (Pakistan) 2004.

Dileep N, Junaid S, Rakesh KN, et al., Antibacterial activity of three Streptomyces species isolated from soils of Shikaripura, Karnataka, India. J Biol Sci Opin 2013; 1(3).

Kekuda P, Dileep N, Junaid S, et al., Biological activities of Streptomyces species SRDP-07 isolated from soil of Thirthahalli, Karnataka, India. Int J Drug Dev Res 2013; 5(3): 268-285.

Mohanta YK and Behera SK, Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess Biosyst Eng 2014; 37(11): 2263-9.

Valan AM, Ignacimuthu S, and Agastian P, Actinomycetes from Western Ghats of Tamil Nadu with its antimicrobial properties. Asian Pac J Trop Dis 2012; 2(2): S830-S837.

Charoensopharat K, Thummabenjapone P, Sirithorn P, et al., Antibacterial substance produced by Streptomyces sp. No. 87. Afr J Biotechnol 2008; 7(9).

Uddin M, Mahmud M, Anwar M, et al., Influence of culturing conditions for optimum antimicrobial metabolite production by Streptomyces fulvoviridis. Chittagong Univ J Biol Sci 2013; 5(1): 63-75.

Castillo UF, Strobel GA, Ford EJ, et al., Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 2002; 148(Pt 9): 2675-85.

Ser H-L, Tan LT-H, Law JW-F, et al., Focused review: cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Front Microbiol 2017; 8: 2065.

Law JW-F, Ser H-L, Ab Mutalib N-S, et al., Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9(1): 3056.

Law JW-F, Ser H-L, Duangjai A, et al., Streptomyces colonosanans sp. nov., a novel actinobacterium isolated from Malaysia mangrove soil

exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front Microbiol 2017; 8: 877.

Rahman MA, Islam MZ, Khondkar P, et al., Characterization and antimicrobial activities of a polypeptide antibiotic isolated from a new strain of Streptomyces parvulus. Bangladesh Pharm J 2010; 13(1): 14-16.

Watve MG, Tickoo R, Jog MM, et al., How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 2001; 176(5): 386- 390.

Augustine N, Kerkar S, and Thomas S, Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr Microbiol 2012; 64(4):


Busarakam K, Bull AT, Girard G, et al., Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie Van Leeuwenhoek 2014; 105(5): 849-61.

Iwatsuki M, Uchida R, Yoshijima H, et al., Guadinomines, type III secretion system inhibitors, produced by Streptomyces sp. K01-0509. J Antibiot 2008; 61: 230-236.

Zindel S, Kaman WE, Fröls S, et al., The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth. Antimicrob Agents Chemother 2013; 57(7): 3388-3391.

Holmes TC, May AE, Zaleta-Rivera K, et al., Molecular insights into the biosynthesis of guadinomine: a type III secretion system inhibitor. J Am Chem Soc 2012; 134(42): 17797-17806.

Pathom-Aree W, Stach JE, Ward AC, et al., Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 2006; 10(3): 181-9.

Subramani R and Aalbersberg W, Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 2012; 167(10): 571-80.

Lee L-H, Zainal N, Azman A-S, et al., Mumia flava gen. nov., sp. nov., an actinobacterium of the family Nocardioidaceae. Int J Syst Evol Microbiol 2014; 64(5): 1461-1467.

Lee L-H, Azman A-S, Zainal N, et al., Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 2015; 65(3): 996-1002.

Azman AS, Othman I, Velu SS, et al., Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 2015; 6: 856.

Azman A-S, Othman I, Fang C-M, et al., Antibacterial, anticancer and neuroprotective activities of rare Actinobacteria from mangrove forest soils. Indian J Microbiol 2017; 57(2): 177-187.

Ser H-L, Ab Mutalib N-S, Yin W-F, et al., Genome sequence of Streptomyces antioxidans MUSC 164T isolated from mangrove forest. Prog Microb Mol Biol 2018; 1(1).

Ser H-L, Tan LT-H, Palanisamy UD, et al., Streptomyces antioxidans

sp. nov., a novel mangrove soil actinobacterium with antioxidative and neuroprotective potentials. Front Microbiol 2016; 7: 899.

Mitra A, Pramanik A, Santra SC, et al., Phylogeny, phenotypic and nutritional characteristics of estuarine soil actinomycetes having broadspectrum antimicrobial activity derived from an ecologically guided bioprospecting programme. World J Microbiol Biotechnol 2011; 27(7): 1679-1688.

Mitra A, Santra SC, and Mukherjee J, Distribution of actinomycetes, their antagonistic behaviour and the physico-chemical characteristics of the world’s largest tidal mangrove forest. Appl Microbiol Biotechnol 2008; 80(4): 685-695.

Meena B, Rajan LA, Vinithkumar NV, et al., Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol 2013; 13(1): 145.

You J, Xue X, Cao L, et al., Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 2007; 76(5): 1137-44.

Sahoo K and Dhal N, Potential microbial diversity in mangrove ecosystems: a review. Indian J Mar Sci 2009.

Zainal N, Ser H-L, Yin W-F, et al., Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest. Antonie Van Leeuwenhoek 2016; 109(3): 467-474.

Lee L-H, Azman A-S, Zainal N, et al., Microbacterium mangrovi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 2014; 64(10): 3513-3519.

Ser H-L, Yin W-F, Chan K-G, et al., Antioxidant and cytotoxic potentials of Streptomyces gilvigriseus MUSC 26T isolated from mangrove soil in Malaysia. Prog Microb Mol Biol 2018; 1(1).

Ser H-L, Chan K-G, Tan W-S, et al., Complete genome of mangrove- derived anti-MRSA streptomycete, Streptomyces pluripotens MUSC 135T. Prog Microb Mol Biol 2018; 1(1).

Eccleston GP, Brooks PR, and Kurtboke DI, The occurrence of bioactive micromonosporae in aquatic habitats of the Sunshine Coast in Australia. Mar Drugs 2008; 6(2): 243-61.

Han Y, Yang B, Zhang F, et al., Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol (NY) 2009; 11(1): 132-40.

Schmidt E, Obraztsova A, Davidson S, et al., Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium,“Candidatus Entotheonella palauensis”. Mar Biol 2000; 136(6): 969-977.

Selvin J, Joseph S, Asha K, et al., Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 2004; 50(2): 117-122.

Pimentel-Elardo SM, Kozytska S, Bugni TS, et al., Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar Drugs 2010; 8(2): 373-80.

Nithyanand P, Manju S, and Karutha Pandian S, Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Lett 2011; 314(2): 112-8.

Zhang XY, He F, Wang GH, et al., Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals. World J Microbiol Biotechnol 2013; 29(6): 1107-16.

Li J, Dong JD, Yang J, et al., Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes. Antonie Van Leeuwenhoek 2014; 106(4): 623-35.

Tanaka H, Koyama Y, Awaya J, et al., Nanaomycins, new antibiotics produced by a strain of Streptomyces. I. Taxonomy, isolation, characterization and biological properties. J Antibiot (Tokyo) 1975; 28(11): 860-7.

Hollants J, Leliaert F, De Clerck O, et al., What we can learn from sushi: a review on seaweed–bacterial associations. FEMS Microbiol Ecol 2013; 83(1): 1-16.

Ser HL, Ab Mutalib NS, Yin WF, et al., Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolatede from mangrove soil in Malaysia. Front Microbiol 2015.

Tan LT-H, Chan K-G, Lee L-H, et al., Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 2016; 7: 79.

Ahmed E and Holmstrom SJ, Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7(3): 196-208.

Banin E, Vasil ML, and Greenberg EP, Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 2005; 102(31): 11076-11081.

Berlutti F, Morea C, Battistoni A, et al., Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol 2005; 18(4): 661-670.

Mey AR, Craig SA, and Payne SM, Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 2005; 73(9): 5706-5719.


  • There are currently no refbacks.

Copyright (c) 2019 Loh Teng-Hern Tan, Learn-Han Lee, Bey-Hing Goh

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.