MIKRORNA – MOLEKUL VERSATIL DALAM KANSER TIROID

Azliana Mohamad Yusof, Nurul-Syakima Ab Mutalib Abstract - 809 PDF - 29

Abstract


MikroRNA adalah molekul bebenang tunggal RNA kecil, dengan kepanjangan di antara 18 hingga 25 nukleotida. Molekul pengawalatur ini mampu menyasarkan lebih dari satu gen, dan dianggarkan mengawal 30% daripada keseluruhan gen manusia. MikroRNA tidak diendahkan oleh saintis beberapa dekad sebelum ini kerana ia tidak mengekod sebarang protein lantas dianggap jujukan sampah (junk sequence), namun sejak penemuan lin-4 yang mengawalselia perkembangan larva Caenorhabditis elegans, semakin banyak kajian bertumpu ke arah molekul ini. Sebagai molekul pengawalatur (regulatory molecule), mikroRNA adalah calon kajian yang sesuai untuk penyelidikan kanser tiroid di mana landskap mutasi genomnya secara relatif lebih senyap berbanding kanser lain. Hanya sebilangan kecil gen bermutasi dikenalpasti dalam kanser tiroid dan mekanisme molekular patogenesis kanser ini masih kurang jelas. Artikel ini bertujuan untuk mendedahkan pembaca terhadap mikroRNA dan faedahnya dalam kajian kanser tiroid, serta perkembangan terkini kajian tentang mikroRNA dalam kanser ini. Penekanan terhadap peranan mikroRNA dalam kanser tiroid, dengan memfokus kepada versatiliti molekul ini dalam aplikasi diagnosis, prognosis, serta sebagai biopenanda dalam mengenalpasti pesakit yang tidak avid terhadap radioiodin akan turut dibincangkan.


Full Text:

PDF

References


Adlakha, Y.K., Saini, N., 2016. MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 37, 8529–8554. https://doi.org/10.1007/s13277-016-4988-z

Bernstein, E., Caudy, A.A., Hammond, S.M., Hannon, G.J., 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366. https://doi.org/10.1038/35053110

Biamonte, F., Santamaria, G., Sacco, A., Perrone, F.M., Cello, A.D., Battaglia, A.M., Salatino, A., Vito, A.D., Aversa, I., Venturella, R., Zullo, F., Costanzo, F., 2019. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci. Rep. 9, 5668. https://doi.org/10.1038/s41598-019-42221-x

Boyerinas, B., Park, S.-M., Hau, A., Murmann, A.E., Peter, M.E., 2010. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 17, F19-36. https://doi.org/10.1677/ERC-09-0184

Budczies, J., von Winterfeld, M., Klauschen, F., Bockmayr, M., Lennerz, J.K., Denkert, C., Wolf, T., Warth, A., Dietel, M., Anagnostopoulos, I., Weichert, W., Wittschieber, D., Stenzinger, A., 2014. The landscape of metastatic progression patterns across major human cancers. Oncotarget 6, 570–583.

Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., Croce, C.M., 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529. https://doi.org/10.1073/pnas.242606799

Cancer Genome Atlas Research Network, 2014. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690. https://doi.org/10.1016/j.cell.2014.09.050

Carvalheira, G., Nozima, B.H., Cerutti, J.M., 2015. microRNA-106b-mediated down-regulation of C1orf24 expression induces apoptosis and suppresses invasion of thyroid cancer. Oncotarget 6, 28357–28370. https://doi.org/10.18632/oncotarget.4947

Chan, S.-H., Wang, L.-H., 2015. Regulation of cancer metastasis by microRNAs. J. Biomed. Sci. 22, 9. https://doi.org/10.1186/s12929-015-0113-7

Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., Shiekhattar, R., 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744. https://doi.org/10.1038/nature03868

Chou, C.-K., Chi, S.-Y., Huang, C.-H., Chou, F.-F., Huang, C.-C., Liu, R.-T., Kang, H.-Y., 2016. IRAK1, a Target of miR-146b, Reduces Cell Aggressiveness of Human Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 101, 4357–4366. https://doi.org/10.1210/jc.2016-2276

Clemson, C.M., McNeil, J.A., Willard, H.F., Lawrence, J.B., 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275.

Derrien, T., Guigó, R., Johnson, R., 2011. The Long Non-Coding RNAs: A New (P)layer in the “Dark Matter.” Front. Genet. 2, 107. https://doi.org/10.3389/fgene.2011.00107

Diao, Y., Fu, H., Wang, Q., 2017. MiR-221 Exacerbate Cell Proliferation and Invasion by Targeting TIMP3 in Papillary Thyroid Carcinoma. Am. J. Ther. 24, e317–e328. https://doi.org/10.1097/MJT.0000000000000420

Dong, S., Meng, X., Xue, S., Yan, Z., Ren, P., Liu, J., 2016. microRNA-141 inhibits thyroid cancer cell growth and metastasis by targeting insulin receptor substrate 2. Am. J. Transl. Res. 8, 1471–1481.

Esquela-Kerscher, A., Slack, F.J., 2006. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269. https://doi.org/10.1038/nrc1840

Fernald, K., Kurokawa, M., 2013. Evading apoptosis in cancer. Trends Cell Biol. 23, 620–633. https://doi.org/10.1016/j.tcb.2013.07.006

Giza, D.E., Vasilescu, C., Calin, G.A., 2014. Key principles of miRNA involvement in human diseases. Discov. Craiova Rom. 2, e34. https://doi.org/10.15190/d.2014.26

Gregory, R.I., Yan, K.-P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., Shiekhattar, R., 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240. https://doi.org/10.1038/nature03120

Gregory, S.M., Damania, B., 2009. KSHV and the toll of innate immune activation. Cell Cycle Georget. Tex 8, 3246–3247. https://doi.org/10.4161/cc.8.20.9571

Gullerova, M., 2015. Long Non-coding RNA, in: Felekkis, K., Voskarides, K. (Eds.), Genomic Elements in Health, Disease and Evolution: Junk DNA. Springer New York, New York, NY, pp. 83–108. https://doi.org/10.1007/978-1-4939-3070-8_4

Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.-C., Hung, T., Argani, P., Rinn, J.L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R.B., van de Vijver, M.J., Sukumar, S., Chang, H.Y., 2010. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076. https://doi.org/10.1038/nature08975

Han, P.A., Kim, H., Cho, S., Fazeli, R., Najafian, A., Khawaja, H., McAlexander, M., Dy, B., Sorensen, M., Aronova, A., Sebo, T.J., Giordano, T.J., Fahey, T.J., Thompson, G.B., Gauger, P.G., Somervell, H., Bishop, J.A., Eshleman, J.R., Schneider, E.B., Witwer, K.W., Umbricht, C.B., Zeiger, M.A., 2016. Association of BRAF V600E Mutation and MicroRNA Expression with Central Lymph Node Metastases in Papillary Thyroid Cancer: A Prospective Study from Four Endocrine Surgery Centers. Thyroid Off. J. Am. Thyroid Assoc. 26, 532–542. https://doi.org/10.1089/thy.2015.0378

Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell 144, 646–674. https://doi.org/10.1016/j.cell.2011.02.013

Hayes, J., Peruzzi, P.P., Lawler, S., 2014. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469. https://doi.org/10.1016/j.molmed.2014.06.005

Ishiguro, H., Kimura, M., Takeyama, H., 2014. Role of microRNAs in gastric cancer. World J. Gastroenterol. WJG 20, 5694–5699. https://doi.org/10.3748/wjg.v20.i19.5694

Kavitha, N., Vijayarathna, S., Jothy, S.L., Oon, C.E., Chen, Y., Kanwar, J.R., Sasidharan, S., 2014. MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. Asian Pac. J. Cancer Prev. APJCP 15, 7489–7497.

Kozomara, A., Birgaoanu, M., Griffiths-Jones, S., 2019. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162. https://doi.org/10.1093/nar/gky1141

Kozomara, A., Griffiths-Jones, S., 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152-157. https://doi.org/10.1093/nar/gkq1027

Kunej, T., Obsteter, J., Pogacar, Z., Horvat, S., Calin, G.A., 2014. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit. Rev. Clin. Lab. Sci. 51, 344–357. https://doi.org/10.3109/10408363.2014.944299

Lakshmanan, A., Wojcicka, A., Kotlarek, M., Zhang, X., Jazdzewski, K., Jhiang, S.M., 2015. microRNA-339-5p modulates Na+/I− symporter-mediated radioiodide uptake. Endocr. Relat. Cancer 22, 11–21. https://doi.org/10.1530/ERC-14-0439

Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., Lin, C., Socci, N.D., Hermida, L., Fulci, V., Chiaretti, S., Foà, R., Schliwka, J., Fuchs, U., Novosel, A., Müller, R.-U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D.B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.-I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C.E., Nagle, J.W., Ju, J., Papavasiliou, F.N., Benzing, T., Lichter, P., Tam, W., Brownstein, M.J., Bosio, A., Borkhardt, A., Russo, J.J., Sander, C., Zavolan, M., Tuschl, T., 2007. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell 129, 1401–1414. https://doi.org/10.1016/j.cell.2007.04.040

Lee, R.C., Feinbaum, R.L., Ambros, V., 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S.H., Kim, V.N., 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060. https://doi.org/10.1038/sj.emboj.7600385

Li, D., Jian, W., Wei, C., Song, H., Gu, Y., Luo, Y., Fang, L., 2014. Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer. Int. J. Clin. Exp. Pathol. 7, 7672–7680.

Li, L., Lv, B., Chen, B., Guan, M., Sun, Y., Li, H., Zhang, B., Ding, C., He, S., Zeng, Q., 2015. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochem. Biophys. Res. Commun. 462, 314–321. https://doi.org/10.1016/j.bbrc.2015.04.134

Li, M., Li, J., Ding, X., He, M., Cheng, S.-Y., 2010. microRNA and Cancer. AAPS J. 12, 309–317. https://doi.org/10.1208/s12248-010-9194-0

Li, Y., Kowdley, K.V., 2012. MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics 10, 246–253. https://doi.org/10.1016/j.gpb.2012.07.005

Lin, S., Gregory, R.I., 2015. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321–333. https://doi.org/10.1038/nrc3932

Liu, Xin, Yan, K., Lin, X., Zhao, L., An, W., Wang, C., Liu, Xiaodong, 2014. The association between BRAF (V600E) mutation and pathological features in PTC. Eur. Arch. Oto-Rhino-Laryngol. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. EUFOS Affil. Ger. Soc. Oto-Rhino-Laryngol. - Head Neck Surg. 271, 3041–3052. https://doi.org/10.1007/s00405-013-2872-7

Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R., 2005. MicroRNA expression profiles classify human cancers. Nature 435, 834–838. https://doi.org/10.1038/nature03702

Ma, L., Teruya-Feldstein, J., Weinberg, R.A., 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688. https://doi.org/10.1038/nature06174

Ma, Y., Qin, H., Cui, Y., 2013. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem. Biophys. Res. Commun. 441, 958–963. https://doi.org/10.1016/j.bbrc.2013.11.010

Mizuno, R., Kawada, K., Sakai, Y., 2018. The Molecular Basis and Therapeutic Potential of Let-7 MicroRNAs against Colorectal Cancer. Can. J. Gastroenterol. Hepatol. 2018. https://doi.org/10.1155/2018/5769591

Mukhopadhyay, S., Panda, P.K., Sinha, N., Das, D.N., Bhutia, S.K., 2014. Autophagy and apoptosis: where do they meet? Apoptosis Int. J. Program. Cell Death 19, 555–566. https://doi.org/10.1007/s10495-014-0967-2

Nikiforov, Y.E., Nikiforova, M.N., 2011. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7, 569–580. https://doi.org/10.1038/nrendo.2011.142

Nikiforova, M.N., Tseng, G.C., Steward, D., Diorio, D., Nikiforov, Y.E., 2008. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 93, 1600–1608. https://doi.org/10.1210/jc.2007-2696

Nisticò, P., Bissell, M.J., Radisky, D.C., 2012. Epithelial-Mesenchymal Transition: General Principles and Pathological Relevance with Special Emphasis on the Role of Matrix Metalloproteinases. Cold Spring Harb. Perspect. Biol. 4, a011908. https://doi.org/10.1101/cshperspect.a011908

Oue, N., Anami, K., Schetter, A.J., Moehler, M., Okayama, H., Khan, M.A., Bowman, E.D., Mueller, A., Schad, A., Shimomura, M., Hinoi, T., Aoyagi, K., Sasaki, H., Okajima, M., Ohdan, H., Galle, P.R., Yasui, W., Harris, C.C., 2014. High miR-21 expression from FFPE tissues is associated with poor survival and response to adjuvant chemotherapy in colon cancer. Int. J. Cancer 134, 1926–1934. https://doi.org/10.1002/ijc.28522

Pallante, P., Visone, R., Ferracin, M., Ferraro, A., Berlingieri, M.T., Troncone, G., Chiappetta, G., Liu, C.G., Santoro, M., Negrini, M., Croce, C.M., Fusco, A., 2006. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13, 497–508. https://doi.org/10.1677/erc.1.01209

Park, J.-E., Heo, I., Tian, Y., Simanshu, D.K., Chang, H., Jee, D., Patel, D.J., Kim, V.N., 2011. Dicer recognizes the 5’ end of RNA for efficient and accurate processing. Nature 475, 201–205. https://doi.org/10.1038/nature10198

Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Müller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., Ruvkun, G., 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89. https://doi.org/10.1038/35040556

Peng, Y., Croce, C.M., 2016. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 1, 15004. https://doi.org/10.1038/sigtrans.2015.4

Qiu, Z.-L., Shen, C.-T., Song, H.-J., Wei, W.-J., Luo, Q.-Y., 2015. Differential expression profiling of circulation microRNAs in PTC patients with non-131I and 131I-avid lungs metastases: a pilot study. Nucl. Med. Biol. 42, 499–504. https://doi.org/10.1016/j.nucmedbio.2015.01.009

Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., Ruvkun, G., 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906. https://doi.org/10.1038/35002607

Ren, Q., Liang, J., Wei, J., Basturk, O., Wang, J., Daniels, G., Gellert, L.L., Li, Y., Shen, Y., Osman, I., Zhao, J., Melamed, J., Lee, P., 2014. Epithelial and stromal expression of miRNAs during prostate cancer progression. Am. J. Transl. Res. 6, 329–339.

Riesco-Eizaguirre, G., Wert-Lamas, L., Perales-Patón, J., Sastre-Perona, A., Fernández, L.P., Santisteban, P., 2015. The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis. Cancer Res. 75, 4119–4130. https://doi.org/10.1158/0008-5472.CAN-14-3547

Risch, N., 2001. The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 10, 733–741.

Rufino‐Palomares, E.E., Reyes‐Zurita, F.J., Lupiáñez, J.A., Medina, P.P., 2013. MicroRNAs as Oncogenes and Tumor Suppressors, in: MicroRNAs in Medicine. John Wiley & Sons, Ltd, pp. 223–243. https://doi.org/10.1002/9781118300312.ch14

Sciuto, R., Romano, L., Rea, S., Marandino, F., Sperduti, I., Maini, C.L., 2009. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 20, 1728–1735. https://doi.org/10.1093/annonc/mdp050

Shen, C.-T., Qiu, Z.-L., Song, H.-J., Wei, W.-J., Luo, Q.-Y., 2016. miRNA-106a directly targeting RARB associates with the expression of Na+/I− symporter in thyroid cancer by regulating MAPK signaling pathway. J. Exp. Clin. Cancer Res. 35, 101. https://doi.org/10.1186/s13046-016-0377-0

Shi, L., Lin, P., Wen, D., Gao, L.S., Liang, L., Luo, Y., Wei, Y., He, Y., Yang, H., Ma, W.J., 2018. Expression level of miR-146 b-5 p via miRNA sequencing and its potential targets in papillary thyroid cancer.

Sondermann, A., Andreghetto, F.M., Moulatlet, A.C.B., da Silva Victor, E., de Castro, M.G., Nunes, F.D., Brandão, L.G., Severino, P., 2015. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clin. Exp. Metastasis 32, 521–530. https://doi.org/10.1007/s10585-015-9724-3

Strell, C., Lang, K., Niggemann, B., Zaenker, K.S., Entschladen, F., 2010. Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp. Cell Res. 316, 138–148. https://doi.org/10.1016/j.yexcr.2009.09.003

Swierniak, M., Wojcicka, A., Czetwertynska, M., Stachlewska, E., Maciag, M., Wiechno, W., Gornicka, B., Bogdanska, M., Koperski, L., de la Chapelle, A., Jazdzewski, K., 2013. In-depth characterization of the microRNA transcriptome in normal thyroid and papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 98, E1401-1409. https://doi.org/10.1210/jc.2013-1214

Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., Mitsudomi, T., Takahashi, T., 2004. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756. https://doi.org/10.1158/0008-5472.CAN-04-0637

Terao, M., Fratelli, M., Kurosaki, M., Zanetti, A., Guarnaccia, V., Paroni, G., Tsykin, A., Lupi, M., Gianni, M., Goodall, G.J., Garattini, E., 2011. Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells: biological correlates and molecular targets. J. Biol. Chem. 286, 4027–4042. https://doi.org/10.1074/jbc.M110.184994

Varilh, J., Bonini, J., Taulan-Cadars, M., 2015. Role of Non-coding RNAs in Cystic Fibrosis. Cyst. Fibros. Light New Res. https://doi.org/10.5772/60449

Vriens, M.R., Weng, J., Suh, I., Huynh, N., Guerrero, M.A., Shen, W.T., Duh, Q.-Y., Clark, O.H., Kebebew, E., 2012. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer 118, 3426–3432. https://doi.org/10.1002/cncr.26587

Wang, G., Wang, L., Sun, S., Wu, J., Wang, Q., 2015. Quantitative measurement of serum microRNA-21 expression in relation to breast cancer metastasis in Chinese females. Ann. Lab. Med. 35, 226–232. https://doi.org/10.3343/alm.2015.35.2.226

Wang, Z., Zhang, H., Zhang, P., Li, J., Shan, Z., Teng, W., 2013. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis. Med. Oncol. Northwood Lond. Engl. 30, 577. https://doi.org/10.1007/s12032-013-0577-9

Wightman, B., Bürglin, T.R., Gatto, J., Arasu, P., Ruvkun, G., 1991. Negative regulatory sequences in the lin-14 3’-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 5, 1813–1824.

Wightman, B., Ha, I., Ruvkun, G., 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.

Xing, M., Haugen, B.R., Schlumberger, M., 2013. Progress in molecular-based management of differentiated thyroid cancer. Lancet Lond. Engl. 381, 1058–1069. https://doi.org/10.1016/S0140-6736(13)60109-9

Xiong, B., Cheng, Y., Ma, L., Zhang, C., 2013. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int. J. Oncol. 42, 219–228. https://doi.org/10.3892/ijo.2012.1707

Xue, X., Liu, Y., Wang, Y., Meng, M., Wang, K., Zang, X., Zhao, S., Sun, X., Cui, L., Pan, L., Liu, S., 2016. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 7, 84508–84519. https://doi.org/10.18632/oncotarget.13022

Yang, M., Shen, H., Qiu, C., Ni, Y., Wang, L., Dong, W., Liao, Y., Du, J., 2013. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur. J. Cancer Oxf. Engl. 1990 49, 604–615. https://doi.org/10.1016/j.ejca.2012.09.031

Yang, Y., Meng, H., Peng, Q., Yang, X., Gan, R., Zhao, L., Chen, Z., Lu, J., Meng, Q.H., 2015. Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther. 22, 23–29. https://doi.org/10.1038/cgt.2014.66

Yuan, H., Xin, S., Huang, Y., Bao, Y., Jiang, H., Zhou, L., Ren, X., Li, L., Wang, Q., Zhang, J., 2017. Downregulation of PDCD4 by miR-21 suppresses tumor transformation and proliferation in a nude mouse renal cancer model. Oncol. Lett. 14, 3371–3378. https://doi.org/10.3892/ol.2017.6605

Zhang, J., Wang, J., Zhao, F., Liu, Q., Jiang, K., Yang, G., 2010. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin. Chim. Acta Int. J. Clin. Chem. 411, 846–852. https://doi.org/10.1016/j.cca.2010.02.074

Zhou, Y.-L., Liu, C., Dai, X., Zhang, X.-H., Wang, O.-C., 2012. Overexpression of miR-221 is associated with aggressive clinicopathologic characteristics and the BRAF mutation in papillary thyroid carcinomas. Med. Oncol. Northwood Lond. Engl. 29, 3360–3366. https://doi.org/10.1007/s12032-012-0315-8


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Azliana Mohd Yusuf, Nurul-Syakima Ab Mutalib

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.