Agarwood Branch Ethanolic Extract Affects Expression of Apoptotic Genes in MCF-7 Breast Cancer Cells
DOI:
https://doi.org/10.36877/pddbs.a0000239Abstract
Breast cancer is one of the most common death causes among women worldwide. Treatment is usually associated with chemically synthesized drugs with serious side effects which shifted the attention of cancer researchers towards development of natural product alternatives. Ethnopharmaceutical evidence showed that Aquilaria spp. have been used to treat a wide range of disorders. However, scientific evidence is still lacking to support and extend the traditional applications to cancer. This study aims to investigate differential gene expression (DEG) of MCF-7 cells treated with agarwood branch ethanolic extract (ABEE) to provide insights into its cell growth-inhibiting effects. Methods: cDNA synthesis from RNA of MCF-7 cells treated with the 8 µg/ml ABEE and DMSO-treated cells (control), respectively, were subjected to RT2 Profiler Array Human Cell Death Finder™ containing 84 genes related to cell death mechanism. Pathway analysis was carried out using the online KEGG Pathway tool. Results: 48 genes that met the threshold fold regulation cut-off of 2 and p < 0.05; 41 DEGs from the list were down-regulated, and 7 were up-regulated. Pathway analysis suggested ABEE may have caused apoptosis of MCF-7 cells through extrinsic and/or intrinsic apoptotic pathways, including activation of p53 that could be the first step towards apoptotic elimination of the cancer cells upon treatment of ABEE. Conclusion: Results obtained supported the growth inhibition effects of ABEE against MCF-7 cells that can serve as the basis for further work towards extending the use of agarwood as cancer therapeutics.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Phirdaous Abbas, Nurhusna Samsudin, Nur Iffah Ishak, Hamzah Mohd Salleh, Saripah Salbiah Syed Abd. Azziz, Ma'an Fahmi Rashid Al-Khatib , Yumi Zuhanis Has-Yun Hashim
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This broad license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
The author(s) permits HH Publisher to publish this article that has not been submitted elsewhere.