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Abstract: Lutein, nonivamide, and baicalein, organic compounds found in a variety of 

plants, are known to exert anti-inflammatory effects in animal cells. Dendritic cells (DCs) 

are professional antigen-presenting cells (APCs) and link the innate and adaptive immune 

systems. DCs can be directed into fully mature APCs by exposure to bacterial or viral 

components, resulting in inflammatory situations. The manipulation of DC maturation 

provides a strategy for the treatment of allergic and inflammatory diseases. In this study, we 

evaluated the effects of lutein, nonivamide, and baicalein on the maturation and activation of 

DCs. Compared to nonivamide and baicalein, lutein significantly and dose-dependently 

reduced the levels of maturation-associated cell surface markers, including CD40, co-

stimulatory molecule CD86, and major histocompatibility complex class II (I-Ab) molecule 

in lipopolysaccharide (LPS)-stimulated DCs. Lutein also decreased IL-12p40 and IL-6 gene 

expression and secretion in LPS-stimulated DCs. Furthermore, lutein significantly enhanced 

the endocytic ability of LPS-stimulated DCs. These results demonstrated that lutein may 

exhibit immunosuppressive activity by inhibiting the phenotypic and functional maturation 

of DCs, and provide new evidence for the value of lutein in the search for novel therapeutic 

agents in the treatment of inflammatory diseases. 

Keywords: Lutein, Dendritic cells, Maturation, Immunosuppression; SDG 3 Good health 

and well-being 

 

1. Introduction 

Professional antigen-presenting cells (APCs) are immune cells that specialize in 

capturing, processing and presenting antigens and are very effective in activating T cells. 

Professional APCs express high levels of antigen presentation molecules, such as MHC class 
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I and II, as well as co-stimulatory molecules whereas non-professional APCs solely express 

MHC class I molecules [1]. Dendritic cells (DCs) are effective APCs that play crucial roles in 

initiating and modulating immune responses [2]. In short, DCs residing in peripheral tissues 

are poised to capture and process antigens into small peptides, which are presented on their 

cell surfaces along with appropriate co-stimulatory molecules. Simple molecules and regular 

patterns of molecular structures known as pathogen-associated molecular patterns (PAMPs) 

are recognized by DCs through pathogen-recognition receptors (PRPs) [3]. PAMPs, such as 

lipoteichoic acid, bacterial lipoproteins, double-stranded RNA, and lipopolysaccharides, as 

well as inflammatory mediators such as TNF-α and IL-1β, are captured by DCs, after which 

DCs undergo maturation. Mature DCs, with upregulated CD40, CD80, CD86, and MHC 

molecules on their cell surfaces [4], migrate toward the draining secondary lymphoid organs 

where they activate antigen-specific T cells, which stimulate cellular immune responses [5]. 

Thus, DCs link innate and adaptive immunity.  

Lutein, an oxygenated carotenoid found in carrots, kale, spinach, and other green 

leafy vegetables, modulates light energy in plants and its consumption by animals improves 

visual function [6]. It has other beneficial biological functions, including antioxidant [7, 8], anti-

carcinogenic [9], anti-atherogenic [10], anti-osteoporotic [11], and anti-ototoxic [12] activities. 

Such advantageous properties of lutein have led scientists to investigate its effect on the 

immune system. Many studies have concluded that lutein has an anti-inflammatory role in a 

variety of cells. For example, lutein was reported to decrease IL-8 production in LPS-

stimulated uveal melanocytes through the reduction of the JNK and NF-κB signaling 

pathways [13]. Additionally, lutein downregulated pro-inflammatory cytokines, including IL-

12 and IL-1β, in LPS-stimulated hepatocytes [14]. Furthermore, lutein decreased neutrophil 

and inflammatory cell accumulation in sensory nerve cells during acute neurogenic edema 
[15]. Although previous research illuminates the anti-inflammatory effects of lutein in a 

variety of cells, its direct effects on DCs have not yet been elucidated. 

Nonivamide and baicalein are organic compounds also extracted from plants; both 

are known to induce numerous positive outcomes in humans. Nonivamide, also known as 

pelargonic or nonylic acid vanillylamide, is a pungent organic compound found in chili 

peppers along with other capsaicinoids, including capsaicin and dihydrocapsaicin [16]. 

Capsaicinoids are commonly used as food additives because of their spicy flavor and are also 

used in self-defence pepper sprays [17]. Among them, nonivamide is often synthesized and 

applied topically to the skin for its anaesthetic and anti-inflammatory effects  [18]. Nonivamide 

is also known to be neuroprotective against oxidative stress-associated factors in human 

neuroblastoma cells [19] and to improve skin elasticity by inducing dermal IGF hormone 

release [20]. Despite these beneficial properties, the potential impacts of nonivamide on the 

immune system have yet to be discovered. 

Baicalein is a flavonoid originally isolated from the roots of Scutellaria baicalensis 

and is also found in a variety of herbs. This compound is commonly found in traditional 

Chinese herbal medicine and is used as an anti-bacterial, anti-viral, and anti-inflammatory 

agent to treat a variety of conditions, such as diarrhoea and hepatitis [21, 22]. Recent studies 
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have also revealed a wide range of benefits, including anxiolytic [23], anti-carcinogenic [24, 25], 

and anti-oxidative [26] effects, as well as an ability to alleviate the symptoms of Alzheimer’s 

disease [27, 28], type 2 diabetes [29], and Parkinson’s disease [30]. The role of baicalein in 

immunity has been of interest and its anti-inflammatory [31-33] properties are well-known; 

however, the direct effects of baicalein treatment on DCs have not been studied. 

The anti-inflammatory capacity of plant-based compounds has long been exploited in 

Chinese medicine, due to the presence of various bioactive components [34]. Lutein, 

nonivamide, and baicalein have been shown to lower oxidative stress and inflammation [18, 

35, 36]. Numerous compounds have been shown to exhibit anti-inflammatory responses by 

reducing pro-inflammatory cytokines in macrophages [18, 37, 38]. Although DCs are the most 

prominent APCs in the immune system and inflammatory responses, the effects of lutein, 

nonivamide, and baicalein on DC functionality have not yet been elucidated.  

In this study, we demonstrated that, compared with nonivamide and baicalein, lutein 

significantly suppressed the phenotypic and functional properties of DCs after maturation 

induced by LPS (Figure 1). This property was characterized by reduced expression of cell 

surface molecules and pro-inflammatory cytokines along with an enhanced capacity for 

antigen uptake. These results indicated that lutein inhibited the functionality of DCs. The 

inhibitory effects of lutein imply that it could be a potential therapeutic agent for 

inflammatory diseases.  

 

Figure 1. A graphical abstract illustrates lutein suppresses the phenotypic and functional properties of DCs after 

maturation induced by LPS. 
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2. Materials and Methods  

2.1. Mice 

Seven- to 9-week-old female C57BL/6 mice were purchased from OrientBio 

(Seongnam City, Korea). The mice were maintained under pathogen-free conditions and 

were treated according to the Korea University Guidelines for the Care and Use of Laboratory 

Animals (No. of approval: KLG 08-011).  

2.2. Proteins and reagents  

The plant compounds, nonivamide (HPLC grade ≥97%), baicalein (HPLC grade 

≥97.5%), and lutein (HPLC grade ≥96%) were purchased from Sigma-Aldrich (St. Louis, 

MO). Recombinant murine granulocyte-macrophage colony-stimulating factor (GM-CSF) 

was purchased from Prospec (Rehovot, Israel). APC-conjugated anti-mouse CD11c and 

FITC-conjugated anti-mouse MHC class II were purchased from eBioscience (San Diego, 

CA). PE-conjugated anti-mouse CD40 and PE-conjugated anti-mouse CD86 were purchased 

from BD Bioscience (San Diego, CA). LPS (from Escherichia coli 0111:B4) and Dextran-

FITC (average molecular weight: 40000) were purchased from Sigma-Aldrich (St. Louis, 

MO).  

2.3. Generation of bone marrow-derived dendritic cells (BMDCs) 

Bone marrow-derived dendritic cells (BMDCs) were generated as described [39]. 

Briefly, tibiae and femurs of C57BL/6 mice were isolated and the BM cells were flushed out 

from the bones with RPMI 1640 medium by using a syringe. The cell clusters were then 

suspended by pipetting and red blood cells were removed by RBC lysis buffer containing 

0.15 M of NH4Cl, 1 mM of KHCO3, and 0.1 mM of EDTA. Then, the cells were suspended 

in RPMI 1640 medium containing 10% heat-inactivated FBS (Capricorn Scientific), 50 μM 

of 2-ME (Sigma-Aldrich, St. Louis, MO), 10 mM of HEPES, 10 ng/ml GM-CSF (ProSpec, 

Rehovot, Israel) and antibiotics (100 units/ml penicillin and 100 µg/ml streptomycin, Life 

Technologies BRL, Rockville, MD). The number of cells was set to 5×106 cells/ml and this 

cell culture was filled up to 10 ml in culture dishes. The culture dishes were maintained at 

37°C in a humidified atmosphere with 5% carbon dioxide (CO2) for 7 d. Fresh culture 

medium was provided every 2 d. Loosely adherent clustered cells were harvested on day 7 

and used as immature DCs. BMDCs were first treated with 10 ng/ml LPS, followed by the 

addition of each test compound (nonivamide, baicalein, and lutein) at the indicated 

concentration for 20 h. 

2.4. Flow cytometric analysis  

To investigate the expression of surface markers on BMDCs, BMDCs (1.5×106 

cells/well) were harvested and resuspended in FACS buffer (0.5% FBS and 0.05% sodium 

azide in PBS). Next, cells were stained for 15 min at 4°C with APC-conjugated anti-CD11c 

(N418) along with one of the following: PE-conjugated anti-CD40 (3/23), PE-conjugated 
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anti-CD86 (GL1), and FITC-conjugated anti-MHC class II (NIMR-4). For apoptosis analysis, 

the phosphatidylserine translocation in the cells was stained with the annexin V-

FITC/propidium iodide (PI) detection kit (Biobud, Seoul, Korea) according to the 

manufacturer’s instructions. The stained cells were subjected to FACS analysis. Flow 

cytometry was performed on a FACSCalibur with CellQuest software (BD Biosciences). 

2.5. Reverse transcription-polymerase chain reaction (RT-PCR) 

BMDCs (2×106 cells/well) were harvested and washed twice with PBS. Then, total 

mRNA extracted from the BMDCs was reverse transcribed into cDNA, followed by PCR 

amplification using a thermal cycler from MJ Research (Watertown, MA). The sequences of 

the primers in this study were as follows: IL-6 (F), tgaacaacgatgatgcactt, IL-6 (R), 

cgtagagaacaacataagtc; IL-1β (F), ctgaagcagctatggcaact, IL-1β (R), acaggacaggtatagattc; 

TNF-α (F), ggcaggtctactttggagtcattg, TNF-α (R), acattcgaggctccagtgaatttcgg; IL-12p40 (F), 

cagaagctaaccatctcctggtttg, IL-12p40 (R), tccggagtaatttggtgcttcacac. After amplification, the 

products were electrophoresed in a 1.5% agarose gel stained with ethidium bromide (EtBr) 

and photographed under UV exposure.  

2.6. Cytokine assays  

 The quantities of IL-12p40 and IL-6 in the culture supernatants were determined by 

using mouse IL-12/IL-23 total p40 Ready-SET-Go! ELISA kit (eBioscience, San Diego, CA) 

and OptEIA™ IL-6 ELISA kit (BD Bioscience, San Diego, CA).  

2.7. Quantification of antigen uptake 

 To measure the endocytic ability of the BMDCs, BMDCs (2×105 cells/well) were 

equilibrated at 37°C or 4°C for 30 min and further incubated for 40 min with media 

containing 0.5 mg/ml dextran-FITC at 37°C. As a negative control, BMDCs were incubated 

at 4°C. Cells were then washed with FACS buffer and stained for 10 min with APC-

conjugated CD11c mAb. Afterwards, the stained cells were analyzed by FACSCalibur (BD 

Biosciences). 

2.8. Statistical analysis 

All experiments were repeated at least three times. The results were calculated as the 

mean ± standard deviation (SD) and the statistical significance between the control group 

and the experimental groups was analyzed by the student t-test. The p values indicated as *p 

<0.05, **p <0.01 and ***p <0.001 are considered statistically significant. 
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3. Results 

3.1. Nonivamide, baicalein, and lutein differentially affected the expression of CD86 on 

LPS-stimulated DCs 

LPS are endotoxins found in gram-negative bacteria that induce strong immune 

responses in animals, including the maturation of DCs. Therefore, LPS-stimulated DCs were 

used as positive controls for identifying the effects of nonivamide, baicalein, and lutein on 

suppressing DC maturation. In order to determine the influence of the three plant-derived 

compounds on DC maturation, immature DCs (iDCs) were cultured with 10 ng/ml LPS for 

20 h in the absence or presence of 50 µM of each test compound. As depicted in Figure 2A 

and Figure 2B, LPS-stimulated DCs treated with lutein displayed a 40% decrease in CD86 

expression, whereas those treated with nonivamide and baicalein did not exhibit a significant 

change. CD86 is a co-stimulatory molecule associated with the maturation of DCs and is 

known to bind to regulatory receptors on T cells [40]. The cytotoxicity of lutein in DCs was 

determined by annexin V-FITC and propidium iodide (PI) staining. As shown in Figure 2C, 

even in the presence of 50 µM lutein, the percentages of DCs not stained with either dye 

remained constant, indicating that lutein did not affect cell viability. 

 

Figure 2. Differential effects of nonivamide, baicalein, and lutein on CD86 expression in LPS-stimulated DCs. 

Bone marrow cells were isolated and differentiated into iDCs by GM-CSF (10 ng/ml) treatment for 7 d. (A) 

iDCs were treated with LPS (10 ng/ml) in the absence and presence of nonivamide, baicalein, and lutein (50 

µM) and cultured for 20 h. The untreated LPS-stimulated DCs were considered a positive control for DC 

maturation. The expression of CD86 was analyzed by flow cytometry and represented by histograms gated for 

CD11c+ cells. The numbers in the histograms represent the mean fluorescence intensity (MFI) and the data are 

representative of three independent experiments.  (B) Expression of CD86 was plotted relative to that in 

untreated LPS-stimulated DCs (100%, black bar). The data are expressed as mean ± SD from three independent 

experiments. **p<0.01 compared to the untreated LPS-stimulated group by Student t-test. (C) iDCs were 
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treated with LPS (10 ng/ml) in the absence and presence of lutein (50 µM) and cultured for 20 h. The cells were 

then stained with propidium iodide (PI) and annexin V-FITC and analyzed using flow cytometry. The data are 

representative of three independent experiments. 

3.2. Lutein suppressed the expression of co-stimulatory molecules and major 

histocompatibility complex class (MHC) class II molecules on LPS-stimulated DCs 

An increase in co-stimulatory molecules and MHC class II molecule expression 

on DC cell surfaces signifies the cell’s maturation. These DC surface markers together 

integrate signals to activate T cells [41]. In order to analyze the ability of lutein to inhibit 

DC maturation, iDCs were cultured with 10 ng/ml LPS for 20 h in the absence or 

presence of various concentrations of lutein (1, 10, 25, and 50 µM). The expression of 

maturation-associated cell surface molecules was then investigated using flow 

cytometry. As illustrated in Figure 3A and Figure 3B, lutein significantly and dose-

dependently suppressed the expression of CD40, CD86, and MHCII on LPS-stimulated 

DCs. These results indicated that lutein inhibited the phenotypic maturation of DCs 

induced by LPS. 

 

Figure 3. Lutein suppresses the expression of maturation-associated cell surface molecules on LPS-treated 

DCs. (A) iDCs were treated with LPS (10 ng/ml) in the absence and presence of lutein (1, 10, 25, and 50 µM) 

and cultured for 20 h. The cells were then stained with PE-conjugated anti-CD40, anti-CD86, APC-conjugated 

anti-I-Ab, and FITC-conjugated anti-CD11c mAb, and analyzed using flow cytometry. The numbers in the 

histograms represent the MFI and the data are representative of three independent experiments.  (B) Expression 

of surface molecules was plotted compared to that in untreated LPS-stimulated DCs (100%, black bars). The 
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data are expressed as mean ± SD from three independent experiments. *p <0.05, **p <0.01, ***p <0.001 

compared to the untreated LPS-stimulated DCs by Student t-test. 

3.3. Lutein inhibited gene expression and protein secretion of pro-inflammatory 

cytokines in LPS-stimulated DCs.  

Mature DCs produce a variety of pro-inflammatory cytokines, such as IL-1β, IL-

6, TNF-α, and IL-12p40. The effect of lutein on mRNA expression (IL-1β, TNF-α, IL-

6, and IL-12p40) and protein secretion (IL-12p40 and IL-6) in LPS-treated DCs was 

identified. To assess mRNA levels by RT-PCR analysis, iDCs were cultured in 10 ng/ml 

LPS for 6 h in the presence and absence of lutein (1, 10, and 50 µM). As shown in Figure 

4A, IL-1β gene expression was unaffected, but TNF-α, IL-6 and IL-12p40 gene 

expression was slightly inhibited by lutein treatment compared to those of untreated DCs 

stimulated with LPS.  

To assess protein levels using sandwich ELISA, iDCs were cultured in 10 ng/ml 

LPS for 24 h in the presence and absence of lutein (1, 10, and 50 µM) and the culture 

supernatants were evaluated. As indicated in Figure 4B, lutein significantly and dose-

dependently suppressed IL-12p40 and IL-6 secretion from LPS-stimulated DCs. These 

results indicated that lutein suppressed the functional maturation of DCs induced by LPS. 

 

Figure 4. The effect of lutein on the expression of pro-inflammatory cytokines in LPS-stimulated DCs. 

(A) iDCs were treated with LPS (10 ng/ml) in the absence and presence of lutein (1, 10, and 50 µM) and 

cultured for 6 h. The mRNA levels of IL-1β, TNF-α, IL-6, IL-12p40, and β-actin were determined by RT-

PCR. The relative mRNA expression of IL-1β, TNFα, IL-6, and IL-12p40 were quantified using the 

ImageJ program. Data are mean ± SD from three independent experiments. (B) iDCs were treated with 

LPS (10 ng/ml) in the absence and presence of lutein (1, 10, and 50 µM) and cultured for 20 h. The protein 
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levels of IL-6, and IL-12p40 in the culture supernatants were measured by ELISA. The data are expressed 

as mean ± SD from three independent experiments which were done in triplicates. *p <0.05, ***p <0.001 

compared to the untreated LPS-stimulated DCs by Student t-test. 

3.4. Lutein enhanced the endocytic ability of LPS-stimulated DCs 

iDCs actively engulf external molecules by receptor-mediated endocytosis and 

macropinocytosis, processing and presenting them as antigens. Macropinocytosis is 

responsible for the continual internalization of solutes dissolved in the fluid surrounding 

DCs. The capacity of DCs to capture antigens decreases as DCs mature [42]. In order to 

identify the effect of lutein on the endocytic ability of DCs, iDCs were cultured in 10 

ng/ml LPS for 20 h in the presence and absence of lutein (50 µM). To exclude the non-

specific binding and uptake of FITC-labeled dextran, experiments were also carried out 

at 4°C. As presented in Figure 5A and Figure 5B, lutein restored endocytosis in cells that 

showed poor endocytic activity owing to LPS stimulation. These results indicated that 

lutein inhibited the functional maturation of DCs induced by LPS. 

 

 

Figure 5. Lutein enhances the endocytic ability of LPS-stimulated DCs. iDCs were treated with LPS (10 

ng/ml) in the absence and presence of lutein (1, 10, and 50 µM) and cultured for 20 h. (A) The cells were 

harvested and stained with FITC-dextran (0.5 mg/ml) for 40 min at 37°C and 4°C, respectively. The cells 

were further stained with APC-conjugated CD11c mAb for 10 min and the amount of FITC-dextran in 

CD11c+ cells was determined by flow cytometry. The numbers in the plots represent the percentage of 

CD11c+Dextran+ cells and the data are representative of three independent experiments. (B) The 

percentages of CD11c+Dextran+ cells were expressed as mean ± SD from three independent experiments. 

* p < 0.05 compared to the untreated LPS-stimulated DCs by Student t-test 
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4. Discussion 

Carotenoids are fat-soluble, organic pigments primarily found in fruits and vegetables 

included in the human diet. Their consumption is considered essential because they are 

known to contribute to normal skin color and ultraviolet sensitivity [43]. One of the most 

common dietary carotenoids is lutein, which is found abundantly in egg yolks, spinach, kale, 

zucchini, and carrots. Lutein consumption and accumulation in the lens and retina of the 

human eye is also necessary because it protects the ocular tissue against oxidative damage 
[44]. Therefore, it is important to identify the effects of lutein on immune responses. DCs are 

professional APCs that play important roles in inflammatory responses. During activation, 

DCs produce a variety of cytokines and chemokines to promote adaptive responses. 

Consequently, the effects of lutein on LPS-stimulated DCs were investigated to reveal the 

distinct roles of lutein in regulating the immune response.  

In this study, the inhibitory effects of lutein on the maturation and activation of DCs 

were determined for the first time. First, lutein significantly and dose-dependently suppressed 

the expressions of three maturation-associated surface markers (CD40, co-stimulatory 

molecule CD86, and MHC class II molecule) in LPS-stimulated DCs (Figure 3). Among 

these phenotypic changes caused by lutein exposure, CD86 expression was most 

substantially affected (Figure 3).  

Moreover, DCs secrete large amounts of inflammatory cytokines during maturation, 

which are considered functional markers of DC maturation. After lutein treatment, the 

production of pro-inflammatory cytokines IL-12p40 and IL-6 efficiently decreased in LPS-

stimulated DCs (Figure 4). IL-12 is mainly produced by phagocytes and activated DCs, 

which promote Th1 differentiation, and efficiently induce CD4+ T cells to produce IFN-γ [45]. 

IL-6 is a multifunctional cytokine secreted by many cell types that induces B-cell 

proliferation [46] and Th17 differentiation [47]. IL-6 is produced at the site of inflammation and 

IL-6-induced activation of TH-17 cells promotes the production of pro-inflammatory 

cytokines, which can exacerbate inflammation and tissue damage [48, 49]. Suppression of IL-6 

expression [50] and IL-6 receptors [51] is emerging as a potential therapeutic method for 

reducing inflammation and modulating immune responses. 

Furthermore, lutein restored the endocytic activity of LPS-treated DCs (Figure 5). 

Immature DCs actively internalize antigens and solutes through mannose receptor-mediated 

endocytosis and macropinocytosis [52], whereas endocytosis is downregulated in mature DCs 
[53]. Lutein suppressed DC maturation by upregulating its endocytic capacity (Figure 5). 

These results clearly indicated that lutein inhibited the phenotypic and functional maturation 

of LPS-stimulated DCs. 

DCs are well-known key mediators of immune responses during inflammation. Upon 

maturation, DCs secrete distinct types of cytokine profiles and trigger antigen-specific 

immune responses by proliferating and polarizing Th cells. Therefore, the suppression of DC 

maturation provides an effective solution for reducing the symptoms of inflammatory 

diseases. Many previously studied substances that inhibit DC maturation may become potent 

anti-inflammatory drugs. For example, retinoic acid (RA), a metabolite derived from 
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carotenoids, negatively regulates the initiation of the allergic airway inflammatory response. 

RA blocks the IL-1β-mediated recruitment of NF-κB to promoters of NF-κB-regulated genes, 

thereby suppressing DC maturation and inflammation [54]. Accumulating evidence, including 

that presented in the aforementioned report, indicates that lutein inhibits NF-κB signaling. 

Lutein induced anti-inflammatory effects in macrophages by disrupting NF-κB activation [55, 

56]. Lutein also inhibited LPS-induced IL-8 secretion in uveal melanocytes via the reduction 

of NF-κB and JNK signals [13]. In LPS-stimulated microglia, lutein suppressed inflammatory 

responses through NF-κB inactivation [57]. Therefore, we speculated that lutein suppressed 

LPS-treated DC maturation mainly by interrupting NF-κB signaling. However, the exact 

molecular mechanism involved in the inhibition of DC maturation remains to be elucidated. 

The capacity of lutein to reduce inflammation has long been investigated. In addition 

to its ability to protect the eye from inflammatory damage resulting from oxidative stress, 

lutein has been reported to inhibit chronic inflammation and alleviate the symptoms of 

various conditions, such as diabetes [58], bone fracture [59], and coronary disease [60]. Likewise, 

treatment of inflammation mostly focuses on inhibiting the production of pro-inflammatory 

mediators. Anti-inflammatory properties of lutein may contribute to the development of 

precision nutrition, resulting in a healthier gut microbiome and helping with the disease 

process [61]. 

5. Conclusions 

 This study demonstrated that lutein phenotypically and functionally inhibited the 

maturation of LPS-stimulated DCs. Therefore, lutein may be a useful therapeutic agent, 

especially for the treatment of mature DC-mediated inflammatory diseases. However, the 

exact molecular mechanism relevant to the lutein-mediated suppression of DC activation 

remains to be elucidated. 
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