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Abstract: Background: Colorectal cancer (CRC) is a major global health concern, with a 

significant impact on morbidity and mortality. The molecular mechanisms underlying CRC, 

especially DNA methylation patterns in solute carrier (SLC) genes, have gained attention due 

to their potential role in CRC initiation and progression. SLC genes encode transporters that 

play vital roles in maintaining cellular homeostasis, and alterations in their DNA methylation 

can influence nutrient and metabolite transport, impacting cancer cell behavior. This proposal 

aims to investigate the DNA methylation status of SLC genes in CRC, utilizing microarray 

technology and a suite of bioinformatics tools. Methods: Microarray methylation data from 
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CRC and adjacent normal tissues underwent preprocessing, differential methylation analysis, 

functional enrichment exploration, and correlation analysis for a detailed study of 

methylation patterns. Results: This study decoded the epigenetic landscape of SLC genes in 

CRC, promising innovative therapeutic strategies and improved patient outcomes to combat 

this prevalent malignancy. 

Keywords: Colorectal cancer; DNA methylation; Solute carrier genes; Biomarker; Precision 

medicine; SDG 3 Good health and well-being 

 

1. Introduction 

Cancer contributes to about one out of every six fatalities, and it’s predicted that the 

global burden of new cancer cases will rise as compared to previous years to approximately 

20.3 million and global cancer-related deaths will rise to 13.2 million by the year 2030, 

surpassing previous figures [1-4]. Colorectal cancer (CRC) has been a significant global health 

concern, responsible for many cancer-related fatalities worldwide [5-7]. The disease's 

pathogenesis is multifaceted, with a plethora of genetic and epigenetic changes playing 

pivotal roles in its onset, progression, and metastasis [8-10]. Early detection of CRC presents 

challenges, and thus, a deeper understanding of these genetic and epigenetic factors is vital 

for enhancing early detection methods and prognosis [11-13]. Early diagnosis of CRC 

significantly increases the patient survival rates given that early-stage CRC exhibits survival 

rates of up to a 5-year survival rate of 90% [14, 15]. Among these factors, DNA methylation, 

an epigenetic modification that regulates gene expression, has emerged as a key player in 

CRC development and progression [16, 17]. 

Solute carrier (SLC) genes represent a large family of membrane transport proteins 

that facilitate the transport of a diverse range of substrates across biological membranes. 

These genes have been implicated in various physiological processes and pathological 

conditions, including cancer. The human genome contains at least 362 putatively functional 

protein-coding SLC genes, which are organized into 55 families [18]. These genes encode a 

diverse group of membrane transport proteins that play crucial roles in transporting various 

solutes across biological membranes [19]. In the context of CRC, SLC genes are involved in 

drug resistance, metabolic reprogramming, and other cancer-related processes [20, 21]. 

However, despite their potential importance in CRC, the methylation status of SLC genes in 

this disease remains largely unexplored. Understanding how DNA methylation changes in 

SLC genes contribute to CRC could provide valuable insights into the molecular mechanisms 

underlying this disease and potentially reveal novel therapeutic targets or biomarkers. 

This study aims to investigate the DNA methylation patterns of SLC genes in CRC 

using microarray technology and bioinformatics tools. Microarray technology allows for 

high-throughput analysis of methylation patterns across the genome, providing a 

comprehensive view of epigenetic alterations in CRC. Coupled with bioinformatics tools, it 
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enables the identification of differentially methylated regions, functional enrichment 

analysis, and correlation studies. 

By focusing on SLC genes, this study hopes to shed light on their potential role in 

CRC pathogenesis through DNA methylation changes. The findings could contribute to our 

understanding of the molecular mechanisms underlying CRC and may reveal novel 

therapeutic targets or biomarkers for this disease. 

2. Materials and Methods 

2.1. Human Methylation 450K data analysis 

The in-house methylation microarray data from 54 CRC and 54 paired adjacent 

normal colon tissues were retrieved and subjected to bioinformatics analysis. The data is also 

available from the GEO under accession GSE193535. Quality control was performed using 

Genome Studio software version 2.0.4 (Illumina Inc.). The ChAMP R package [22] was used 

to further analyze the past IDAT files from 108 samples in a single analysis, and filters were 

applied to all probes, removing CpG sites with a detection p value > 0.01. This includes the 

removal probes located on the sex chromosomes as well. The peak-based correction method 

(PBC) [23] was used for data normalization prior to batch effect correction using ComBat [24]. 

The β-values were then extracted and subjected to statistical analysis. The Limma 

Bioconductor package [25] was employed to identify differentially methylated CpG sites, 

applying FDR correction with a p value < 0.01 for significance.  

2.2. Pathway Enrichment Analysis 

We conducted a functional enrichment analysis using the online software GeneCodis 

4 [26] to uncover the enrichment of signaling pathways associated with these genes. Instead 

of utilizing probe IDs, we opted for the IDs of 336 SLC genes that exhibited differential 

methylation. This approach allowed us to focus specifically on the genes of interest and their 

potential roles in CRC. To aid in data interpretation, we generated visualizations in the form 

of bar charts.  

2.3. Receiver operating characteristic (ROC) curve analysis 

The diagnostic efficacy of the potential biomarker was assessed through ROC curve 

analysis, generated using GraphPad Prism 8.0.2. The area under the ROC curve (AUC), 

constructed with a 95% confidence interval (95% CI), served as an accuracy criterion for 

evaluating the potential biomarker. Methylation values from 2277 probes, identified as 

potential biomarkers in CRC cases, were contrasted with their respective controls. An ideal 

diagnostic marker possesses an AUC value of 1. An AUC value ranging from 0.7 to 0.8 is 

deemed acceptable, 0.8 to 0.9 is considered excellent, and anything above 0.9 is regarded as 

outstanding. 
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2.4. MethSurv Survival Analysis based on CpG Methylation Patterns 

Survival analysis was performed using the online tool MethSurv 

(https://biit.cs.ut.ee/methsurv/) [27], which requires entry of a single CpG site per analysis. 

The Kaplan‒Meier survival chart generated separately from the Cancer Genome Atlas Colon 

Adenocarcinoma (TCGA COAD) and Rectal Adenocarcinoma (TCGA READ) for the 

individual CpG sites. A total of 2277 CpG sites, along with CGI and genomic region data for 

the individual CpG sites, were used as input for the analysis. The correlation between the 

DNA methylation of each CpG site and the probability of survival was visualized in the 

Kaplan‒Meier plot.  

3. Results 

3.1. Mapping the Genomic Locations of Differentially Methylated SLC Genes 

In this study, we analyzed the differential methylation status of 54 CRC tissue 

samples and their corresponding adjacent normal samples, totaling 108 samples. We 

performed probe filtering to identify differentially methylated probes (DMPs) with an 

adjusted p-value less than 0.01, following the application of a false discovery rate (FDR) 

correction (Figure 1a). This process yielded a total of 157,846 DMPs. To focus our analysis 

on SLC genes, we implemented an additional filtering step, retaining only those probes 

specific to SLC genes. This resulted in a final selection of 2,277 probes for further analysis. 

These selected probes were then categorized as either hypermethylated or hypomethylated 

based on positive of negative β value difference (Δβ) of between the CRC and normal 

adjacent tissues. Our analysis identified a total of 1,891 probes showing hypomethylation and 

386 probes exhibiting hypermethylation. 

The differentially methylated probes (DMPs) were further classified based on their 

location relative to CpG islands (CGIs), resulting in four distinct regions: CpG island, shores, 

shelves, and open sea regions. As shown in Figure 1b, of the 1,891 hypomethylated probes, 

934 probes (49%) were in the opensea region, 466 probes (25%) were in the shore, 248 probes 

(13%) were in the shelf, and the remaining 243 probes (13%) were in the island region. On 

the other hand, the majority of the hypermethylated probes were found in the island region 

(n = 234; 61%), followed by the shore (n = 85; 22%), opensea (n = 40, 12%), and shelf 

regions (n = 20, 5%). This distribution provides insights into the methylation patterns of the 

SLC genes in CRC. 

The distribution of hypomethylated probes across genomic regions showed that the 

majority (n = 1174; 62%) were in the body region of SLC genes. This was followed by the 

TSS1500 region (n = 245; 13%), and the 3’ and 5’ UTR regions with 169 (9%) and 159 (9%) 

probes, respectively. The TSS200 region contained 80 probes (4%), and the 1st exon had 64 

probes (3%). In contrast, the distribution of hypermethylated probes in SLC genes was more 

balanced. The body region contained 110 DMPs (29%), the TSS200 region had 93 DMPs 

(24%), the 5’UTR region had 76 DMPs (20%), the TSS1500 region had 63 DMPs (16%), the 

https://biit.cs.ut.ee/methsurv/
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1st exon had 28 DMPs (7%), and the 3’UTR region had 16 DMPs (4%). This distribution is 

illustrated in Figure 1c. 

 

 

Figure 1. Identification and Distribution of Differentially Methylated Probes in Solute Carrier Genes. (a) The 

process of identifying differentially methylated probes (DMPs) in Solute Carrier (SLC) genes. (b) Distribution 

of DMPs in relation to CGIs. It shows that of the 1,891 hypomethylated probes, the majority were in the open 

sea and shore regions. In contrast, most hypermethylated probes were found in the island region. (c) 

Distribution of these probes across genomic regions. For hypomethylated probes, the majority were in the body 

region, while for hypermethylated probes, the distribution was more balanced across the body, TSS200, and 

5’UTR regions. 
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3.2. Analysis of Differentially Methylated SLC Genes 

The in-house methylation microarray data from 54 CRC and 54 paired adjacent 

normal colon tissues were retrieved and subjected to bioinformatics analysis. Quality control 

and data normalization were performed using Genome Studio software and the ChAMP R 

package. The Limma Bioconductor package was employed to identify differentially 

methylated CpG sites. Probes with a ∆β value of tumor versus normal ≥ 0.2 were considered 

as hypermethylated and ∆β ≤ -0.2 as hypomethylated. 

The results of this analysis are presented in the Figure 2 below, which shows the top 

10 SLC genes with the highest number of differentially methylated loci. 

Figure 2. Top 10 Solute Carrier (SLC) Genes with the Highest Number of Differentially Methylated Loci. 

 

For example, the SLC12A7 gene has 65 hypomethylated loci and 9 hypermethylated 

loci, making a total of 74 differentially methylated loci. This suggests that SLC12A7 

underwent significant methylation changes in CRC, which could potentially influence 

disease progression and outcome. 

In terms of patterns, the number of hypomethylated loci is generally higher than the 

number of hypermethylated loci for most genes. However, there are exceptions such as 

SLC6A3 and SLC8A1 where the number of hypermethylated loci is higher. These findings 

highlight the complex nature of methylation changes in CRC and underscore the need for 

further research to fully understand their implications. While these genes could serve as 

potential biomarkers for CRC, further validation and exploration of these findings could 

provide valuable insights into the molecular mechanisms underlying CRC. 
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3.3. Functional Analysis of Differentially Methylated SLC Genes - Uncovering Biological 

Significance through Enrichment Analysis  

In this study, we utilized GeneCodis for pathway enrichment analysis. This analysis 

was based on the BioPlanet curated database [28]. Our analysis revealed significant 

enrichment in 66 pathways which predominantly involve transmembrane transport processes, 

including the transport of small molecules, inorganic cations/anions, amino 

acids/oligopeptides, glucose and other sugars, bile salts and organic acids, metal ions, and 

amine compounds 

(https://genecodis.genyo.es/gc4/analysisResults?job=sVOQdPB8qP7thA). This suggests 

that alterations in these transport processes could be a key factor in CRC pathogenesis. 

Our analysis pinpointed the SLC-mediated transmembrane transport pathway as the 

most significantly enriched in our dataset (Figure 3), exhibiting an adjusted p-value of 1.07E-

314 and a relative enrichment score of 32.57. This pathway, orchestrated by SLC proteins, 

governs the translocation of various substances across the cell membrane. Given our focus 

on SLC genes in this analysis, the prominence of this pathway aligns with our expectations. 

SLC proteins, instrumental in ferrying a wide array of solutes across biological membranes, 

appear to be modulated by the differential methylation of SLC genes, potentially influencing 

the progression of CRC. 

Additionally, we identified the transmembrane transport of small molecules as the 

second most significantly enriched pathway, marked by an adjusted p-value of 6.67E-246 

and a relative enrichment score of 19.02. This pathway, integral to numerous cellular 

functions such as nutrient uptake, waste removal, and cell signaling, oversees the movement 

of various small molecules across the cell membrane. The significant enrichment of this 

pathway implies its potential role in CRC pathogenesis.  

Interestingly, our results also highlighted pathways related to neurotransmitter 

transport and release, including sodium/chloride-dependent neurotransmitter transporters and 

the neurotransmitter release cycle. This suggests a potential link between CRC and 

neurological processes. Several metabolic processes were also significantly enriched, 

including the metabolism of vitamins and cofactors, bile acid and bile salt metabolism, 

carbohydrate metabolism, and glucose metabolism. This indicates that metabolic alterations 

could play a crucial role in CRC. Furthermore, we found several pathways related to the 

transport and metabolism of vitamins and related molecules, suggesting a potential role of 

nutritional processes in CRC. The enrichment of pathways associated with metal ions, such 

as zinc transporters and zinc efflux, suggests a potential association between SLC genes and 

metal homeostasis in CRC. Moreover, pathways related to cell surface interactions at the 

vascular wall were also significantly enriched, indicating a potential role of cell-cell 

interactions, and signaling in CRC. Further research into these pathways could provide 

valuable insights into the molecular mechanisms underlying CRC and may reveal novel 

therapeutic targets or biomarkers for this disease. 

https://genecodis.genyo.es/gc4/analysisResults?job=sVOQdPB8qP7thA
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Figure 3. The Ten Most Significantly Enriched Pathways Derived from Differentially Methylated SLC Genes 

3.4. Impact of Differential Methylation in SLC Genes on Drug Response 

Additionally, enrichment was performed against PharmGKB database [29] to 

understand the potential impact of the differentially methylated SLC genes on drug response 

in CRC. PharmGKB is an NIH-funded resource developed by Stanford University and is the 

largest pharmacogenetic database. Four drugs were found to be significantly enriched by the 

differentially methylated SLC genes (Table 1), which are metformin, zidovudine, tipiracil 

hydrochloride, and trifluridine.  

Our analysis revealed a significant association between the antidiabetic drug 

metformin and differentially methylated SLC genes in CRC. The adjusted p-value (pval adj) 

for this association was 3.61e-04, indicating a high level of statistical significance. 

Furthermore, the relative enrichment score was 6.32, suggesting a strong overrepresentation 

of differentially methylated SLC genes among all genes associated with metformin. 

Specifically, we identified 10 SLC genes that were significantly differentially methylated in 

association with metformin. These genes are SLC30A8, SLC22A3, SLC29A4, SLC47A1, 

SLC22A1, SLC22A4, SLC2A2, SLC47A2, SLC22A2, and SLC19A3. 
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Table 1. In silico Analysis of Association of Differentially Methylated SLC Genes with Various Drugs in CRC. 

Drug 

(PharmGKB) 

Genes  Adjusted 

p value 

Relative 

enrichment 

score 

Use 

Metformin SLC30A8, SLC22A3, SLC29A4, 

SLC47A1, SLC22A1, SLC22A4, 

SLC2A2, SLC47A2, SLC22A2, 

SLC19A3 

 3.61e-04 6.32 Used to treat type 2 diabetes [30]  

Zidovudine  SLC22A1, SLCO3A1, 

SLC22A11, SLC22A8, 

SLC22A7, SLC28A3, SLC22A6, 

SLC28A1 

 3.61e-04 7.89 Management and treatment of 

HIV-1 [31]  

Trifluridine SLC47A1, SLC29A1, SLC22A2  3.75e-03 24.65 A component of a chemotherapy 

combination that includes 

trifluridine and tipiracil 

hydrochloride [32]  

Tipiracil 

Hydrochloride 

SLC47A1, SLC29A1, SLC22A2  3.75e-03 24.65 A part of a chemotherapy 

combination that contains 

trifluridine and tipiracil 

hydrochloride [21] 

 

Both trifluridine and tipiracil hydrochloride, components of a chemotherapy 

combination, showed a significant association with the same set of three SLC genes. The 

adjusted p-value of 3.75e-03 and a relative enrichment score of 24.65 for both drugs indicate 

a strong correlation. These findings suggest that these SLC genes may play a crucial role in 

the drug's mechanism of action in chemotherapy and influence their effectiveness in cancer 

treatment. This underscores the potential importance of SLC genes in the therapeutic 

response to this chemotherapy combination in CRC.  

Zidovudine, an antiretroviral medication used for the management and treatment of 

HIV-1, was also significantly associated with eight SLC genes even though this drug is not 

typically associated with cancer.  

3.5. Exploring the Correlation between DNA Methylation Patterns of SLC Transporter Genes 

and Survival Rates in CRC Patients 

Survival analysis was conducted using the MethSurv online tool, which necessitates 

the input of a single CpG site for each analysis. The Kaplan‒Meier survival chart was 

independently generated for each individual CpG site from the TCGA COAD and TCGA 

READ datasets. Out of 2277 differentially methylated probes (DMPs), 114 exhibited a 

significant association with survival in either the TCGA COAD or TCGA READ datasets. 

Interestingly, six DMPs demonstrated a significant survival association across both datasets, 

as detailed in Table 2. Table 3 presents the top 10 differentially methylated SLC genes that 
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are significantly correlated with survival rates in CRC patients. For instance, the SLC12A7 

gene has 23 DMPs associated with survival, 13 of which are found in the COAD dataset and 

12 in the READ dataset. Notably, more than 30% of DMPs in SLC12A7 are significantly 

associated with CRC survival, indicating that these DMPs could potentially serve as valuable 

prognostic markers.  

Table 2. Significantly Associated DMPs for Survival Across Both TCGA COAD and TCGA READ Datasets. 

SLC genes Probes ID Delta-beta value LR test P-value 

   COAD READ 

SLC12A7 cg17851021 -0.078979475 0.023 0.047 

SLC12A7 cg00697639 -0.099582235 0.017 0.045 

SLC35F3 cg10878114 0.090591202 0.047 0.0092 

SLC44A4 cg08506113 -0.086719725 0.025 0.0098 

SLC44A4 cg07643404 -0.080037400 0.015 0.0012 

SLC6A19 cg10035234 -0.141271346 0.0051 0.039 

 

Table 3. Top 10 Differentially Methylated SLC Genes Significantly Correlated with Survival Rates in CRC 

Patients. 

SLC genes Total number of DMP associated with survival COAD READ 

SLC12A7 23 13 12 

SLC22A23 11 6 5 

SLC35F3 7 3 5 

SLC38A10 19 10 9 

SLC44A4 10 4 8 

SLC45A1 8 6 2 

SLC45A4 7 3 4 

SLC6A19 10 4 7 

SLC6A3 9 6 3 

SLC8A1 10 1 9 



PMMB 2023, 6, 1; a0000393 11 of 20 

 

Figure 4. The Ten Most Significant Differentially Methylated Probes (DMPs) within SLC Genes and Their 

Association with Survival Outcomes. COAD: Colorectal Adenocarcinoma, READ: Rectal Adenocarcinoma. 
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Figure 4 presents the ten most significant DMPs associated with survival outcomes. 

For instance, the cg27134910 in the SLC8A1 gene which has a delta-beta value of -

0.254277375, is located in the 'Opensea' region of the gene body, was identified in the READ 

dataset, and has a LR-test p-value of 0.00052, indicating a statistically significant correlation 

with survival outcomes. These findings highlight the potential of these SLC genes and their 

DMPs as prognostic markers for CRC.  

3.6. Evaluating the Diagnostic Potential of Differentially Methylated SLC Genes Using 

ROC Analysis 

The Receiver Operating Characteristic (ROC) curve analysis was performed to 

evaluate the diagnostic performance of the candidate biomarkers. The methylation values of 

2277 probes in SLC genes were plotted against their corresponding controls. The area under 

the ROC curve (AUC) was used as an accuracy criterion for the examination of the candidate 

biomarker. 

Table 3. The Ten Most Significant Differentially Methylated SLC Probes, Ranked by the Highest Area 

Under the Receiver Operating Characteristic (ROC) Curve. 

SLC genes Probes Area under curve Std. Error 95% confidence interval P value 

SLC38A11 cg01770810 0.939 0.02028 0.8992 to 0.9787 <0.0001 

SLC6A3 cg24178621 0.9304 0.02487 0.8816 to 0.9791 <0.0001 

SLC20A2 cg10308027 0.9287 0.02322 0.8832 to 0.9742 <0.0001 

SLC6A16 cg19920353 0.9266 0.02585 0.8759 to 0.9773 <0.0001 

SLC9A11 cg24720132 0.9246 0.02581 0.8740 to 0.9751 <0.0001 

SLC25A24 cg16307793 0.9242 0.02446 0.8763 to 0.9722 <0.0001 

SLC16A3 cg23141183 0.9228 0.02669 0.8705 to 0.9752 <0.0001 

SLC38A10 cg05919238 0.9208 0.02566 0.8705 to 0.9711 <0.0001 

SLC39A10 cg08310476 0.9208 0.02614 0.8696 to 0.9720 <0.0001 

SLC25A4 cg16667710 0.9204 0.02575 0.8700 to 0.9709 <0.0001 
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The results of the ROC curve analysis for the ten most significant differentially 

methylated SLC probes are presented in Table 3. The probe cg01770810 in the gene 

SLC38A11 had the highest AUC value of 0.939, indicating an outstanding diagnostic 

potential. The 95% confidence interval for this probe was 0.8992 to 0.9787, and the p-value 

was less than 0.0001, indicating a statistically significant result. The other probes also showed 

high AUC values, ranging from 0.9204 to 0.939, and all had p-values less than 0.0001. These 

results suggest that these differentially methylated SLC probes could serve as potential 

biomarkers for CRC. 

4. Discussion 

The Solute Carrier (SLC) family of genes plays a crucial role in cancer, with links to 

DNA methylation, metabolic adaptation, drug response, and immune reactivity [33]. DNA 

methylation is a key regulatory mechanism of gene expression, and alterations in methylation 

patterns can influence cancer cell fate. Interestingly, the expression of relevant SLCs was 

correlated with hypo- and hyper-methylation of promoter and body region, showing an 

established DNA methylation pattern. For instance, the positive association of SLC7A11 

cg06690548 methylation with cancer outcome suggests the independent predictive role of 

DNA methylation at a single nucleotide resolution [33]. 

The field of research focusing on the methylation of SLC genes in CRC has indeed 

made substantial strides. This has led to a deeper understanding of the role these genes play 

in the development and progression of CRC. However, despite these advancements, there are 

still numerous areas that require further exploration and clarification. The SLC gene family 

is vast and varied, with each member potentially having a unique role in the progression of 

colorectal cancer. Comprehensive studies are needed to elucidate the specific functions and 

mechanisms of each SLC gene in this context.  

In this research, we discovered that the SLC12A7 gene exhibits the highest number of 

differentially methylated loci. This differential methylation appears to significantly impact 

survival rates in CRC. The SLC12A7 gene, also known as KCC4, is a protein-coding gene 

involved in various processes, including cell volume homeostasis and inorganic ion 

transmembrane transport [34]. This trans-membrane protein, which is 1083 amino acids in 

length, plays a crucial role in regulating cell volume through the transport of potassium and 

chloride [35, 36]. Interestingly, research has shown that an increase in the expression of 

SLC12A7 can enhance the malignant behavior of various types of cancer. Specifically, 

SLC12A7 is found to be overexpressed in gynecologic [37, 38] and breast cancers [39]. This 

overexpression, along with that of other members of the SLC12 gene family, has been 

associated with local tumor invasion, lymph node metastases, and unfavorable clinical 



PMMB 2023, 6, 1; a0000393 14 of 20 

 

outcomes [40]. Our findings suggest that the hypomethylation status of SLC12A7 could serve 

as a potential prognostic marker for CRC. This means that the methylation status of this gene 

could help predict the course or outcome of the disease, providing valuable information for 

treatment planning. Although there are currently no published studies specifically 

investigating the methylation of SLC12A7 in CRC, existing research does suggest a potential 

role for SLC12A7 in cancer progression [34]. However, these studies are not specific to CRC 

and do not conclusively establish a role for SLC12A7 in this type of cancer. Therefore, while 

these findings provide some insight, more targeted research is needed to fully understand the 

role of SLC12A7 in CRC. Further studies are essential to validate these preliminary findings 

and to explore any potential therapeutic implications. 

Our investigation into the pathways significantly enriched due to the differential 

methylation of SLC genes in CRC has yielded crucial insights into the molecular mechanisms 

implicated in the oncogenesis and progression of this disease. The research has unveiled 

several enriched pathways that encompass a diverse array of cellular processes, thereby 

highlighting the complex interplay of SLC gene methylation within the CRC landscape. One 

pathway of particular interest is the SLC-mediated transmembrane transport pathway. This 

pathway facilitates the transport of a variety of molecules across the cell membrane, a process 

in which SLC genes play an instrumental role [41]. The differential methylation of these genes 

could potentially modify the efficiency or specificity of this transport mechanism. Such 

modifications could, in turn, contribute to the progression of CRC by altering cellular 

homeostasis and promoting malignant transformation. Given the emphasis of our analysis on 

SLC genes, the prominence of this pathway is consistent with our expectations. This 

observation also underscores the significance of SLC genes in CRC pathogenesis and their 

potential as therapeutic targets. The differential methylation of SLC genes could serve as a 

novel avenue for therapeutic intervention, offering the possibility of personalized treatment 

strategies based on the patient's unique methylation profile. 

Another important pathway identified is the transmembrane transport of small 

molecules pathway. Transmembrane transport is a fundamental cellular process that involves 

the movement of small molecules across the cell membrane [42]. This process is crucial for 

maintaining cellular homeostasis and facilitating various cellular functions [42]. In the context 

of cancer, the role of transmembrane transport becomes even more significant due to its 

potential involvement in the disease’s progression and response to treatment. The differential 

methylation of SLC genes, as observed in our study, could potentially alter the efficiency or 

specificity of transmembrane transport. Such alterations might contribute to the progression 

of CRC by disrupting cellular homeostasis and promoting malignant transformation. 



PMMB 2023, 6, 1; a0000393 15 of 20 

 

Moreover, changes in the transmembrane transport of small molecules have been implicated 

in the development of drug resistance in CRC [43]. Such alterations in the transmembrane 

transport of small molecules, potentially due to differential methylation of SLC genes, could 

lead to reduced drug uptake or increased drug efflux, thereby contributing to drug resistance. 

We also explored the association between differentially methylated SLC genes in 

CRC and various drugs. Metformin, a drug commonly used to treat type 2 diabetes [44], 

showed a significant association with ten SLC genes in our analysis. Metformin has been 

shown to have anti-proliferative, chemo-preventive, apoptosis-inducing effects, and it can 

also act as an adjuvant and radio-chemosensitizer in CRC [45, 46]. However, some studies 

suggest that metformin does not function as an anti-proliferative agent and is not a beneficial 

adjunct therapy for certain types of cancer [47, 48]. Zidovudine, an antiretroviral medication 

used for the management and treatment of HIV-1, was associated with eight SLC genes. Our 

data suggests a significant relationship between Zidovudine and these SLC genes, potentially 

influencing the drug's effectiveness in HIV-1 treatment. Zidovudine is not typically used in 

the treatment of cancer and is not listed among the FDA-approved drugs for CRC. However, 

one study found that zidovudine significantly reduced the proliferation of murine and human 

cancer cell lines [49]. 

As of now, numerous clinical trials are being conducted to investigate the 

effectiveness of Trifluridine/Tipiracil Hydrochloride, also known as TAS-102, in the 

treatment of metastatic CRC [50-56]. TAS-102 operates through a unique mechanism. 

Trifluridine, a nucleoside analog, can penetrate cells and integrate into their DNA, thereby 

preventing its replication and halting cell division. On the other hand, tipiracil acts as an 

inhibitor of thymidine phosphorylase, an enzyme that breaks down trifluridine in the body. 

This action of tipiracil not only allows trifluridine to remain in the body longer to destroy 

more cancer cells but also aids in maintaining the blood concentration of trifluridine by 

inhibiting its metabolism [57-59]. 

Despite these ongoing studies, there is currently no published evidence that 

establishes a direct link between the use of TAS-102 and the DNA methylation SLC47A1, 

SLC29A1, and SLC22A2. Alterations in the methylation status of these genes could 

potentially influence their expression and the functionality of the proteins they encode. Given 

the roles of these genes and the mechanism of action of TAS-102, it is plausible to 

hypothesize that changes in the methylation status of these genes could impact the uptake or 

efficacy of TAS-102 in cancer cells. However, this hypothesis would require validation 

through rigorous experimental studies. It is essential to continue research in this area to 
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uncover the potential interplay between these genetic factors and the effectiveness of TAS-

102 in treating metastatic CRC. This could pave the way for more personalized and effective 

treatment strategies in the future. 

Recent advancements in nanomedicine have opened up new avenues for improving 

the pharmacological response and clinical outcomes in patients undergoing chemotherapy 
[60]. This is particularly relevant when studying the DNA methylation of SLC genes in CRC, 

as nanoparticle-based drug delivery systems could potentially enhance the therapeutic 

properties of drugs targeting these epigenetic modifications. In parallel, the field of cancer 

classification and therapeutics have also seen significant progress with the advent of deep 

learning algorithms and in silico analysis [61-63]. These algorithms have demonstrated 

promising results in analyzing multi-omics data, including DNA methylation [64-68]. These 

advanced computational algorithms could potentially enhance the analysis and interpretation 

of complex multi-omics data.  

5. Conclusions 

The comprehensive analysis of the microarray methylation data from CRC tissue 

samples and their corresponding adjacent normal tissues has led to significant findings. A 

total of 2,277 differentially methylated probes of SLC genes were identified, indicating a 

potential role of these genes in CRC pathogenesis. Furthermore, several SLC genes were 

found to be significantly associated with the survival of CRC patients, suggesting their 

potential as prognostic markers. Additionally, certain SLC transporter genes emerged as 

promising candidates for specific and accurate diagnostic biomarkers for CRC. These 

findings underscore the potential of SLC genes in enhancing our understanding of CRC and 

in the development of novel diagnostic and therapeutic strategies. 

While the study provides valuable insights into the role of SLC genes in CRC, it does 

have certain limitations. The study is based on a limited sample size of 54 CRC tissue 

samples, and while this provides a good starting point, larger studies could offer more robust 

results. Additionally, this study identifies differentially methylated SLC genes associated 

with CRC but does not provide functional or clinical validation of these genes. Experimental 

and clinical studies are needed to confirm the biological and diagnostic significance of these 

findings. Lastly, the study does not account for inter-individual variability in DNA 

methylation patterns, which can be influenced by factors such as age, lifestyle, and genetic 

background. 
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