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Abstract: Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium that is 

ubiquitous in marine environments. Its perilous co-existence with aquatic animals increases 

the risk of infections and diseases, especially those in aquaculture systems, thus resulting in 

reduced production and economic losses in the aquaculture industry. Moreover, V. 

parahaemolyticus can be easily transmitted to humans via consumption of contaminated 

seafood, resulting in gastroenteritis outbreaks. However, the rise in multidrug resistance 
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within the species has challenged the efficacy of antimicrobial treatments against V. 

parahaemolyticus infections. Therefore, we report the genome sequence of V. 

parahaemolyticus RP0132 isolated from shrimp to gain insight into its antimicrobial 

resistance traits and potential resistance mechanisms. The findings will facilitate the 

development of effective anti-Vibrio agents to manage V. parahaemolyticus infections.   

Keywords: Vibrio parahaemolyticus; multi-drug resistance; genome; antibiotic; next 

generation sequencing 

 

1. Introduction 

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium that is abundant in 

aquatic environments such as estuaries, rivers, and oceans [1-3]. The cohabitation of this 

pathogen and marine animals increases the risk of infections and diseases, particularly in the 

cultivated animals in aquaculture systems [4-6]. This reduces seafood yield and causes massive 

economic losses within the aquaculture industry. Furthermore, V. parahaemolyticus can be 

easily transmitted to humans by consumption of contaminated seafood, resulting in 

gastroenteritis [7-11]. This seafood-borne pathogen has been associated with gastroenteritis 

outbreaks across various countries worldwide [12-14]. Treatment of V. parahaemolyticus 

typically focuses on rehydration and antimicrobial therapy [15], but the emergence of 

antibiotic resistance within the species has reduced the efficacy of the antibiotics [16]. The rise 

in antibiotic resistance (AMR) in V. parahaemolyticus can be attributed to the uncontrolled 

use of antibiotics in aquaculture, where antimicrobial agents are used as prophylaxis and 

treatment for infected cultivated animals [17-20]. Antibiotic residues from the aquaculture 

systems create environmental pressures that result in the development of AMR in V. 

parahaemolyticus isolates [21]. Multiple studies have also reported on multidrug resistant 

(MDR) V. parahaemolyticus strains [22-27]. Moreover, AMR can be spread inter- or intra-

species via horizontal gene transfer, producing new generations of MDR bacteria in our 

surrounding environment [28-30]. Consequently, bacterial infections by MDR bacteria will 

become more prevalent, thereby increasing the difficulty of providing effective treatment, 

resulting in increased fatality rates [31, 32]. As an alternative to antibiotics, researchers have 

been exploring the use of probiotics as a means of preventing bacterial infections via gut 

microbiome modulation [33-35]. However, additional clinical research is still needed to 

produce conclusive evidence on the effectiveness of probiotics [34, 36, 37]. Therefore, it is 

crucial to maintain vigilant, ongoing surveillance of the AMR patterns of V. 

parahaemolyticus strains in our surrounding environment [38, 39]. These efforts are vital for 

safeguarding the aquaculture industry's viability and preserving public health. 

With the increasing availability and accessibility of next-generation sequencing 

technologies [40, 41], whole genome analysis has provided extensive genomic information on 

various organisms [42-45]. To better understand the MDR patterns of V. parahaemolyticus, we 

examined the whole genome sequence (WGS) of V. parahaemolyticus RP0132, a strain 

obtained from our previous study [46]. The strain, RP0132 was isolated from speckled shrimp 
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(Metapenaeus monoceros), which originated from a wet market in Malaysia. This strain was 

resistant to five out of fourteen types of antibiotics tested with a multiple antibiotic resistance 

(MAR) index of 0.36. The antibiogram of RP0132 showed resistance towards ampicillin, 

third-generation cephalosporins (ceftazidime and cefotaxime), gentamicin, and the 

combination antibiotic, ampicillin/sulbactam. The AMR patterns of RP0132 raise concern as 

they depict resistance against the recommended antimicrobial agents in V. parahaemolyticus 

infections, such as third-generation cephalosporins and aminoglycosides [47, 48]. As AMR 

spreads, the antibiotic choice will become very limited when treating these bacterial 

infections. Their AMR and corresponding genes can be identified by examining the whole 

genome sequence of V. parahaemolyticus isolates [49, 50]. This can potentially help develop 

effective treatment for MDR V. parahaemolyticus. Therefore, the whole genome sequence 

of the MDR V. parahaemolyticus RP0132 strain was studied to gain insight into the potential 

mechanisms driving its resistance and enhance the understanding of AMR within the species. 

2. Data description  

The genomic DNA of RP0132 was extracted using MasterPure Complete DNA and 

RNA Purification Kit (LGC Biosearch Technologies) according to the manufacturer’s 

instructions with slight modifications. The DNA quality and quantity were checked using 

agarose gel electrophoresis and Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, 

USA). SMRTbell DNA libraries were generated according to standard protocols and checked 

with Qubit for quantification and bioanalyzer for size distribution detection. The whole 

genome of RP0132 was sequenced on PacBio Sequel II/IIe systems, yielding a genome 

coverage of 102.3-fold. After sequencing, the raw reads were assembled using Falcon which 

is based on the hierarchical genome assembly process (HGAP). BUSCO assessment was also 

done to assess the genome assembly and annotation completeness with single-copy 

orthologs. Ribosome RNA (rRNA) genes were analyzed by the RNAmmer and transfer RNA 

(tRNA) genes were predicted by the tRNAscan-SE. Annotation was performed using 

PATRIC (PathoSystems Resources Integration Center) for antibiotic-resistant genes. Further, 

the PATRIC-annotated antibiotic genes were BLAST against the National Center for 

Biotechnology Information (NCBI) database to confirm the gene identities. 

The whole genome of RP0132 comprised of 2 contigs, and the assembled complete 

genome size of V. parahaemolyticus RP0132 contains 5,165,100 bp, with an average genome 

coverage of 102.3-fold with a GC content of 45%. The BUSCO score of the whole genome 

of RP0132 was 100%, indicating a reliable data output [51]. A total of 132 tRNA genes and 

37 rRNA genes were predicted in the RP0132 genome (Table 1).  
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Table 1. Genomic features of Vibrio parahaemolyticus RP0132. 

 Vibrio parahaemolyticus RP0132 

Total number of contigs 2 

Genome size (bp) 5,165,100 

GC content (%) 45 

Genome coverage 102.3x 

DNA scaffold 2 

Number of chromosomes 2 

Total number of predicted genes 4797 

Total number of protein-coding genes 4523 

Total number of RNA-coding genes 
165 (tRNA-coding-genes: 132, 

rRNA-coding genes: 33) 

Total number of NCRNA-coding genes 4 

Total number of pseudogenes 105 

 

From the WGS of V. parahaemolyticus RP0132, multiple antibiotic resistance genes 

(ARG) were detected, and the findings corroborated the phenotype of the strain. For instance, 

the gene encoding for the detected aminoglycoside phosphotransferase is associated with the 

antibiotic resistance of RP0132 towards gentamicin, and the strain exhibited intermediate 

resistance towards kanamycin. Tian et al. identified a possible mechanistic explanation for 

the resistance towards aminoglycoside in V. parahaemolyticus whereby there is an 

upregulation of antibiotic resistance genes involved in phosphotransferase systems such as 

aminoglycoside phosphotransferases [52]. In addition, resistance towards the beta-lactams, 

including ampicillin, ampicillin/sulbactam, ceftazidime, and cefotaxime is closely related to 

the presence of ARGs encoding for metallo-beta-lactamase and carbenicillin-hydrolyzing class 

A beta-lactamase. Metallo beta-lactamases are enzymes that catalyze the hydrolysis of beta-

lactam antibiotics by binding the negatively charged carboxylate or similarly charged group 

on beta-lactams with hydrogen bonds [53, 54]. Subsequent reactions involve the acylation of 

the beta-lactamase and deacylation of the beta-lactam-beta-lactamase complex with a water 

molecule. This will result in the inactivation of the antibiotic and the regeneration of an active 

beta-lactamase [55]. Currently, no metallo-bata-lactamase inhibitors are available, making 

resistance conferred via metallo-beta-lactamases a difficult challenge to overcome [56]. A 

study by Coutinho et al. determined the presence of CARB-18 gene, which encodes for a 

beta-lactamase in the studied V. parahaemolyticus strain JPA1 [57]. The presence of the beta 

lactamase was associated with the strain's resistance towards the beta-lactams such as 

ampicillin, ampicillin/sulbactam, and ceftazidime [57]. These findings are similar to those 

from the phenotype and genome of RP0132.  

Besides, the presence of ARGs encoding for chloramphenicol acetyltransferase (CAT) 

conferred its intermediate resistance towards chloramphenicol. CAT is the most encountered 

resistance mechanism of bacteria towards chloramphenicol. The CAT enzymes inactivate the 

drug via acetylation to ensure bacteria survival [58, 59]. ARGs encoding for CAT have been 

found in V. parahaemolyticus and members of the Vibrio family, such as V. cholerae and V. 

vulnificus are known to cause human diseases [57, 60]. Moreover, multiple genes encoding for 

efflux pumps were also found within the genome, indicating other possible mechanisms of drug 
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efflux contributing to its antibiotic resistance (Table 2). These efflux pumps are active solute 

transport systems that pump the antibiotics into the extracellular space, allowing V. 

parahaemolyticus isolates to survive and proliferate even under highly distinct antimicrobial 

agents [61]. The ARGs in the genome of RP0132 encode efflux pumps that can be further 

categorized into resistance-nodulation-cell division (RND) and multidrug and toxic 

compound extrusion (MATE) families of efflux pumps. The expression of these efflux pumps 

can confer resistance towards aminoglycosides, beta-lactams, chloramphenicol, 

fluoroquinolones, novobiocin, rifampin, erythromycin, tetracyclines, and trimethoprim [62-64].  

Table 2. Antibiotic resistance genes and their corresponding proteins detected from WGS of V. 

parahaemolyticus RP0132. 

Antibiotic resistance 

genes 

BLAST result 

vmeA Multidrug efflux RND transporter periplasmic adaptor subunit VmeA 

vmeC Multidrug efflux RND transporter periplasmic adaptor subunit VmeC 

vmeE Multidrug efflux RND transporter periplasmic adaptor subunit VmeE 

vmeJ Multidrug efflux RND transporter periplasmic adaptor subunit VmeJ 

vmeT Multidrug efflux RND transporter periplasmic adaptor subunit VmeT 

vmeU Multidrug efflux RND transporter periplasmic adaptor subunit VmeU 

vmeY Multidrug efflux RND transporter periplasmic adaptor subunit VmeY 

vmeB Multidrug efflux RND transporter permease subunit VmeB 

vmeD Multidrug efflux RND transporter permease subunit VmeD 

vmeF Multidrug efflux RND transporter permease subunit VmeF 

vmeK multidrug efflux RND transporter permease subunit VmeK 

vmeV multidrug efflux RND transporter permease subunit VmeV 

vmeZ multidrug efflux RND transporter permease subunit VmeZ 

vmeI efflux RND transporter permease subunit VmeI 

vmeQ efflux RND transporter permease subunit VmeQ 

vmeG efflux RND transporter periplasmic adaptor subunit VmeG 

vmeH efflux RND transporter periplasmic adaptor subunit VmeH 

abgT AbgT family transporter 

bcr/cflA Bcr/CflA family multidrug efflux MFS transporter 

dinF MATE family efflux transporter DinF 

 

The MDR patterns of V. parahaemolyticus RP0132 observed through both phenotype 

and genotype provide insight into the extent of antibiotic contamination in the environment. 

The MAR index of RP0132 is greater than 0.2, indicating the strain originated from a high-risk 

source of contamination where antibiotics are frequently used [65, 66]. This could be attributed 

to the extensive use of antibiotics in aquaculture, which remains a major contributor to AMR 

in V. parahaemolyticus [67]. Moreover, the effects of climate change, such as the increase in 

seawater temperatures, have driven the growth of V. parahaemolyticus populations in the 

environment [13, 68]. With the rise in global temperatures, infectious diseases are becoming 
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more apparent, jeopardizing the livelihoods of global citizens [68-70]. Therefore, there is a dire 

need to search for solutions to resolve this public health issue to protect the public from AMR 

infections. Recent research has been looking into alternative treatment methods to manage the 

populations of V. parahaemolyticus and reduce the spread of AMR in our surrounding 

environments [71-74]. A compelling candidate is Streptomyces sp., a group of Gram-positive, 

filamentous bacteria belonging to the phylum Actinobacteria [75]. They are abundant in nature 

and have been frequently isolated from various sources such as soils, mangroves, and marine 

environments [76-81]. The use of streptomycetes as a probiotic has been widely studied due to 

their ability to produce bioactive secondary metabolites during their life cycle [82-88]. Moreover, 

Streptomyces sp. has shown various bioactivities, including antioxidative, anticancer, 

cytotoxic, antibacterial, and more specifically anti-Vibrio properties [46, 89-91].  

Research has shown the various potential mechanisms behind the anti-Vibrio properties 

of Streptomyces sp [92-95]. For instance, the production of siderophores or enzymes by 

streptomycetes has been shown to inhibit the growth of Vibrios in aquatic environments [96, 97]. 

In addition, the production of melanin compounds from marine Streptomyces has exhibited 

good activity against Vibrios including V. parahaemolyticus [98-100]. Furthermore, the 

supplementation of Streptomyces sp. in aquatic animals has increased the population of 

antimicrobial producers in the host, thereby increasing the host immunity and defense against 

Vibrios [101, 102]. Moreover, the supplementation of Streptomyces sp. in marine animals 

stimulated the release of growth hormones in the host, thereby increasing the growth rates of 

the marine animals [103, 104]. Hence, using Streptomyces as a probiotic can help control Vibrio 

populations while simultaneously increasing host immunity against Vibrios and increasing the 

growth rates of the cultivated animals. However, the developmental process of new antibiotics 

or alternatives is rigorous and time-consuming, and the rapid emergence of AMR may outpace 

the innovation timeline [105-108]. Therefore, it is crucial to establish and implement stringent 

regulations and policies governing the use of antibiotics in aquaculture systems [109, 110]. This is 

vital in safeguarding and preserving antibiotics' efficacy, ultimately upholding food safety and 

public health. In summary, the whole genome sequence of V. parahaemolyticus RP0132 

provides a better understanding of the AMR patterns and the underlying resistance mechanisms 

within V. parahaemolyticus. 

The whole genome sequence of Vibrio parahaemolyticus R0132 has been deposited 

at DDBJ/EMBL/GenBank under accession numbers CP131930.1 and CP131931.1. The 

version described in this genome report is the first version. The genome data is publicly 

available at NCBI GenBank under the BioProject accession number PRJNA1000768, and 

the BioSample accession number SAMN36780134.  
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