

# Supplementary Materials

#### Table S1. Eligibility criteria for study selection.

| General criteria |                                                                                  |
|------------------|----------------------------------------------------------------------------------|
| •                | Participants who attend Hospital Universiti Sains Malaysia for treatment purpose |
| •                | Age 18 years and above                                                           |
| •                | Voluntarily giving consent (either self-volunteer or represented by relatives)   |
| •                | Possibly matched the age and gender between study groups                         |
| Colorectal cance | er (CRC) group                                                                   |
| •                | Diagnosed with CRC (regardless of stages)                                        |
| •                | Did not receive any blood donation within 3 months prior recruited               |
| •                | Does not undergo chemotherapy prior recruited                                    |
| Healthy control  | group                                                                            |
| •                | Does not have any history of malignant                                           |
| •                | Does not receive any blood donation within 3 months prior recruited              |

#### Table S2. The components for 1x reaction of reverse transcription.

| Component                               | Volume per reaction (µl) |
|-----------------------------------------|--------------------------|
| 5x iScript reaction mix                 | 41                       |
| iScript reverse transcriptase           | 1                        |
| Nuclease-free water*                    | X                        |
| RNA template (100 fg to 1µg total RNA)* | X                        |
| Total                                   | 20                       |

Note: \* The volume is adjustable following the concentration and volume needed.



# Table S3. Reverse transcription reaction setup.

| Step                  | Time (min) | Temperature (°C) |
|-----------------------|------------|------------------|
| Priming               | 5          | 25               |
| Reverse transcription | 20         | 46               |
| RT inactivation       | 1          | 95               |
| Hold (Optional step)  | ~          | 4                |

### Table S4. The components of the qPCR master mix.

| Component           | Volume per reaction (µl) |
|---------------------|--------------------------|
| Buffer              | 5                        |
| Primer              | 1 (10µM)                 |
| cDNA                | 2 (10ng)                 |
| Nuclease free water | 3                        |
| Total               | 11                       |

#### **Table S5.** The 2-step cycling of the qPCR program.

| Cycles | Temperature (°C) | Time         | Notes                 |
|--------|------------------|--------------|-----------------------|
| 1      | 95               | 2 min        | Polymerase activation |
| 2      | 95               | 5 second     | Denaturation          |
|        | 60-65            | 15-30 second | Annealing/Extension   |



|                           | CRC patient<br>n=24 (%) | Healthy individual<br>n=8 (%) | <i>p</i> -value |
|---------------------------|-------------------------|-------------------------------|-----------------|
| Variable                  |                         |                               |                 |
| Gender                    |                         |                               | >0.05           |
| Male                      | 16.0 (66.7)             | 3.0 (37.5)                    |                 |
| Female                    | 8.0 (33.3)              | 5.0 (62.5)                    |                 |
| Age                       |                         |                               | < 0.05          |
| Median age                | 65.5                    | 37.0                          |                 |
| Mean ± standard deviation | 61.9 ±13.1              | 39.6 ±9.7                     |                 |
|                           |                         |                               |                 |
| TNM Stage                 |                         |                               |                 |
| Ι                         | 3.0 (12.5)              | -                             |                 |
| П                         | 8.0 (33.3)              | -                             |                 |
| III                       | 6.0 (25.0)              | -                             |                 |
| IV                        | 7.0 (29.2)              | -                             |                 |
| Metastasis                |                         |                               |                 |
| Liver/Lung                | 10.0 (41.7)             | -                             |                 |
| Others                    | -                       | -                             |                 |
| None                      | 14.0 (58.3)             | -                             |                 |
| Tumor lesion              |                         |                               |                 |
| Rectosigmoid              | 17.0 (70.8)             | -                             |                 |
| Rectal                    | 6.0 (25.0)              | -                             |                 |
| Caecum                    | 1.0 (4.2)               | -                             |                 |
| Histology                 |                         |                               |                 |

**Table S6.** The demographical and clinicopathological data of participants.



\_

1.0 (4.2)

Mucous



# **Table S7.** List of disease association of selected miRNAs and the top 10 predicted target genes by each miRNA.

| Type of miRNA                                                      | Disease association                                                                                                                                                              | Targeted gene                                                            |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
|                                                                    |                                                                                                                                                                                  | FOXQ1: Forkhead box Q1                                                   |  |  |
|                                                                    |                                                                                                                                                                                  | ATP1A2: ATPase NA+/K+ transporting subunit alpha 2                       |  |  |
|                                                                    |                                                                                                                                                                                  | SLC4A4: Solute carrier family 4 member                                   |  |  |
|                                                                    |                                                                                                                                                                                  | NEUROG1: Neirogenin 1                                                    |  |  |
| U                                                                  | C. L. M. L. M. M.                                                                                                                                                                | LHX8: LIM homeobax 8                                                     |  |  |
| Hsa-mik-20a-5p                                                     | Colorectal cancer                                                                                                                                                                | CADM2: Cell adhesion molecule 2                                          |  |  |
|                                                                    |                                                                                                                                                                                  | KIF26B: Kinesin family member 26B                                        |  |  |
| Type of miRNA<br>Hsa-miR-20a-5p<br>Hsa-miR-21-5p<br>Hsa-miR-210-3p |                                                                                                                                                                                  | MAPK4: Mitogen-activated protein kinase 4                                |  |  |
|                                                                    |                                                                                                                                                                                  | GPR6: G protein-coupled receptor 6                                       |  |  |
|                                                                    |                                                                                                                                                                                  | SCN2B: Sodium voltage-gated channel beta subunit 2.                      |  |  |
|                                                                    |                                                                                                                                                                                  | SLC30A10: Solute carrier family 30 member 10                             |  |  |
|                                                                    |                                                                                                                                                                                  | BMP3: Bone morphogenetic protein 3                                       |  |  |
|                                                                    | Colorectal cancer, clear renal cell<br>carcinoma, esophageal carcinoma,<br>hepatocellular carcinoma, laryngeal<br>squamous cell carcinoma,<br>lung adenocarcinoma, rectal cancer | BEST3: Bestrophin 3                                                      |  |  |
|                                                                    |                                                                                                                                                                                  | TGFBI: Transforming growth factor beta-induced                           |  |  |
| Use miD 21 5m                                                      |                                                                                                                                                                                  | ALX1: ALX homeobox 1                                                     |  |  |
| Hsa-miR-21-5p                                                      |                                                                                                                                                                                  | IL6R: Interleukin 6 receptor                                             |  |  |
|                                                                    |                                                                                                                                                                                  | THRB: Thyroid hormone receptor beta                                      |  |  |
|                                                                    |                                                                                                                                                                                  | OSR1: Odd-skipped related transcription factor 1                         |  |  |
|                                                                    |                                                                                                                                                                                  | FGF18: Fibroblast growth factor 18                                       |  |  |
|                                                                    |                                                                                                                                                                                  | PDCD4: Programmed cell death                                             |  |  |
| -                                                                  |                                                                                                                                                                                  | FGFRL1: Fibroblast growth factor receptor-like 1                         |  |  |
|                                                                    |                                                                                                                                                                                  | ELFN2: Extracellular leucine-rich repeat and fibronectin type III domain |  |  |
|                                                                    |                                                                                                                                                                                  | containing 2                                                             |  |  |
|                                                                    |                                                                                                                                                                                  | SCARA3: Scavenger receptor class A member 3                              |  |  |
| Haa mi <b>B</b> 210 2n                                             | Glioblastoma, non-small cell lung                                                                                                                                                | GPD1L: Glycerol-3-phosphate dehydrogenase 1 like                         |  |  |
| 11sa-1111K-210-5p                                                  | cancer, prostate cancer                                                                                                                                                          | DENND6A: DENN domain-containing 6A                                       |  |  |
| Hsa-miR-21-5p<br>Hsa-miR-210-3p                                    |                                                                                                                                                                                  | KCMF1: Pottasium channel modulatory factor 1                             |  |  |
|                                                                    |                                                                                                                                                                                  | ZNF462: Zinc finger protein 462                                          |  |  |
|                                                                    |                                                                                                                                                                                  | KMT2D: Lysine methyltransferase 2D                                       |  |  |
|                                                                    |                                                                                                                                                                                  | ISCU: Iron-sulfur cluster assembly enzyme                                |  |  |



## **Table S8.** GO and biological pathway of each of the miRNAs.

| Gene ontology (p-value) |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Biological pathway (p-value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of miRNA           | Molecular<br>function                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cellular<br>component | <b>Biological process</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KEGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REACTOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WikiPathways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hsa-miR-20a-5p          | Cytokine receptor<br>binding<br>$(3.740 \times 10^{-3})$ ,<br>Glycosaminoglyca<br>n binding<br>$(1.998 \times 10^{-2})$ ,<br>Interleukin-8<br>receptor binding<br>$(4.154 \times 10^{-2})$ ,<br>Transferase<br>activity,<br>transferring<br>phosphorus-<br>containing groups<br>$(3.219 \times 10^{-2})$ ,<br>Kinase activity<br>$(1.329 \times 10^{-2})$ ,<br>Phosphotransferas<br>e activity, alcohol<br>group as acceptor<br>$(9.305 \times 10^{-3})$ | NA                    | Angiogenesis<br>(1.215×10 <sup>-28</sup> ),<br>Blood vessel<br>development<br>(2.932×10 <sup>-2</sup> 9),<br>Vasculature<br>development<br>(3.692×10 <sup>-210</sup> ),<br>Response to<br>endogenous stimulus<br>(1.071×10 <sup>-311</sup> ),<br>Response to organic<br>substance (1.562×10 <sup>-212</sup> ),<br>Peptidyl-threonine<br>phosphorylation<br>(1.582×10 <sup>-213</sup> ),<br>Response to<br>chemical<br>(2.615×10 <sup>-214</sup> ),<br>Regulation of<br>angiogenesis<br>(3.673×10 <sup>-215</sup> ),<br>Blood vessel<br>morphogenesis<br>(2.130×10 <sup>-216</sup> ) | Human T-cell<br>leukemia virus 1<br>infection<br>$(9.562 \times 10^{-5})$ ,<br>Human<br>cytomegalovirus<br>infection $(1.063 \times 10^{-4})$ ,<br>Hepatitis<br>$(4.913 \times 10^{-4})$ ,<br>Pancreatic cancer<br>$(5.753 \times 10^{-4})$ ,<br>Transcriptional<br>misregulation in<br>cancer<br>$(1.124 \times 10^{-3})$ ,<br>Pathways in cancer<br>$(1.273 \times 10^{-3})$ ,<br>Proteoglycans in<br>cancer<br>$(1.544 \times 10^{-3})$ ,<br>Proteoglycans in<br>cancer<br>$(1.544 \times 10^{-3})$ ,<br>AGE-RAGE<br>signaling pathway in<br>diabetic<br>complications<br>$(1.713 \times 10^{-3})$<br>Bladder cancer<br>$(3.330 \times 10^{-3})$ ,<br>Gastric cancer<br>$(7.950 \times 10^{-3})$ | Interleukin-4 and<br>Interleukin-13<br>signaling $(1.055 \times 10^{-3})$ , Signaling by<br>FGFR<br>$(3 1.234 \times 10^{-3})$ ,<br>Signaling by FGFR4<br>$(1.625 \times 10^{-3})$ ,<br>FGFR3 mutant<br>receptor activation<br>$(3.499X10^{-2})$ ,<br>Signaling by FGFR1<br>$(2.446 \times 10^{-3})$ ,<br>Insulin receptor<br>signaling cascade<br>$(3.504 \times 10^{-3})$ ,<br>Signaling by FGFR3<br>fusions in cancer<br>$(8.202 \times 10^{-3})$ ,<br>Signaling by FGFR3<br>fusions in cancer<br>$(8.202 \times 10^{-3})$ ,<br>MAPK1 (ERK2)<br>activation $(8.202 \times 10^{-3})$ ,<br>Signaling by FGFR2<br>$(1.018 \times 10^{-2})$ ,<br>Signaling by FGFR4<br>in disease<br>$(1.054 \times 10^{-2})$ ,<br>Signaling by Insulin<br>receptor<br>$(1.276 \times 10^{-2})$ | Hepatitis B           infection $(3.312 \times 10^{-4})$ ,           Leptin signaling           pathway $(6.402 \times 10^{-4})$ ,           IL-7 signaling           pathway $(9.397 \times 10^{-4})$ ,           EGFR tyrosine           kinase inhibitor           resistance $(9.558 \times 10^{-4})$ ,           Pancreatic           adenocarcinoma           pathway $(1.151 \times 10^{-3})$ ,           TCA cycle           nutrient use and           invasiveness of           ovarian cancer $(2.960 \times 10^{-3})$ ,           Spinal cord           injury $(3.443 \times 10^{-3})$ ,           VEGFR2           signaling           pathway $(3.867 \times 10^{-3})$ ,           Bladder cancer $(3.979 \times 10^{-3})$ ,           IL6 signaling           pathway $(1.53 \times 10^{-3})$ , |

Progress in Microbes and Molecular Biology



|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Signaling by FGFR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metalloendopeptid<br>ase inhibitor<br>Hsa-miR-21-5p activity (1.127×10 <sup>-</sup><br><sup>2</sup> ) | Regulation of<br>metalloendopepti<br>dase activity<br>$(1.007 \times 10^{-5})$ ,<br>Regulation of<br>metallopeptidase<br>activity<br>$(1.435 \times 10^{-4})$ ,<br>Negative<br>regulation of<br>metalloendopepti<br>dase activity<br>$(4.452 \times 10^{-3})$ ,<br>Positive<br>regulation of<br>vascular-<br>associated smooth<br>muscle cell<br>apoptotic process<br>$(7.416 \times 10^{-3})$ ,<br>Endothelial cell<br>apoptotic process<br>$(8.540 \times 10^{-3})$ ,<br>Circulatory<br>system<br>development<br>$(1.328 \times 10^{-2})$ | NA | Proteoglycans in<br>cancer<br>$(5.345 \times 10^{-7})$ ,<br>MicroRNAs in cancer<br>$(9.334 \times 10^{-6})$ ,<br>Neurotrophin<br>signaling pathway<br>$(1.664 \times 10^{-3})$ ,<br>FoxO signaling<br>pathway<br>$(2.429 \times 10^{-3})$ ,<br>Hepatitis C<br>$(4.933 \times 10^{-3})$ ,<br>Pathways in cancer<br>$(5.110 \times 10^{-3})$ ,<br>Hepatitis B<br>$(5.573 \times 10^{-3})$ ,<br>Non-small cell lung<br>cancer<br>$(1.047 \times 10^{-2})$ ,<br>EGFR tyrosine kinase<br>inhibitor resistance<br>$(1.380 \times 10^{-2})$ ,<br>Human<br>cytomegalovirus<br>infection $(1.913 \times 10^{-2})$ ,<br><sup>2</sup> ), | in disease<br>(1.722×10 <sup>-3</sup> ),<br>Signaling by FGFR<br>in disease<br>(9.477×10 <sup>-3</sup> ),<br>Signaling by FGFR3<br>fusions in cancer<br>(1.032×10 <sup>-2</sup> ),<br>Signaling by FGFR4<br>in disease<br>(1.326×10 <sup>-2</sup> ),<br>PI-3K cascade:<br>FGFR3<br>(2.866×10 <sup>-2</sup> ),<br>Interleukin-15<br>signaling (3.342×10 <sup>-2</sup> ),<br>Interleukin-15<br>signaling (3.342×10 <sup>-2</sup> ),<br>FGFR1<br>(3.853×10 <sup>-2</sup> ),<br>FGFR3 mutant<br>receptor activation<br>(4.401×10 <sup>-2</sup> ),<br>Signaling by FGFR3<br>in disease<br>(4.985×10 <sup>-2</sup> ),<br>PI-3K cascade:<br>FGFR4<br>(4.985×10 <sup>-2</sup> ). | MET in type 1<br>papillary renal<br>cell carcinoma<br>$(6.819 \times 10^{-3})$ ,<br>Ras signaling<br>$(9.367 \times 10^{-3})$ ,<br>Non-small cell<br>lung cancer<br>$(1.304 \times 10^{-2})$ ,<br>EGFR tyrosine<br>kinase inhibitor<br>resistance<br>$(2.064 \times 10^{-2})$ . |
| Hsa-miR-210-3p NA                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                              |

\*NA: not available.