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Abstract: This article emphasizes the various contributions of actinobacteria to the well-

being of human life on our planet. Agrarian virtues begin with the substitution of chemical 

fertilizers with bio-fertilizing microorganisms which have a versatile potential for the benefit 

of soil and plants by playing complementary and interconnected roles. Thus, these 

microorganisms improve soil health through bioremediation phenomena and the elimination 

of several non-beneficial microorganisms. In agriculture, these microorganisms can be added 

to compost as inoculants to speed up the composting process and provide an additional source 

of beneficial microorganisms for the compost-treated soil. Streptomyces and other 

actinobacteria can also be used as biotechnological sources of herbicides and insecticides. In 

the medical and therapeutic sectors, this paper emphasizes the potential of actinobacteria, in 

particular Streptomyces species, in the production of antibiotics, antioxidant, and anticancer 

agents, opening up avenues for the creation of molecules with high benefits. In 

biotechnology, these totipotent microorganisms produce enzymes widely used in several 

industries, generating considerable revenue. Sporadic data accumulated on these types of 

microorganisms opens up many new avenues for exploiting these natural biocatalytic 

resources. Papers published in the last decade have exploded the amount of information that 

can be put to practical use. To maximize the value of these microorganisms, it would be 

advisable to create common threads between the themes that bring together the areas of 

expertise where these microorganisms could potentially be exploited. This bibliographical 

synthesis is a contribution to the development of a targeted database. 
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1. Introduction 

The widespread adoption of chemical fertilizers in modern agriculture has become 

common. Nonetheless, the excessive application of these fertilizers has resulted in 

environmental contamination, soil degradation, and soil fertility loss [1–3]. Chemical fertilizers 

can also be harmful and toxic to humans and animals by food, feed, and water as shutter 

transmitters [4]. To address these issues, biofertilizers, such as compost, have become 

increasingly popular in agriculture. Composting is a widely used method for recycling 

organic waste and producing a nutrient-rich soil amendment [5]. Actinobacteria, a significant 

bacterial group commonly present in compost, have a vital role in the decomposition of 

organic matter and the transformation of nutrients [6]. In particular, the Streptomyces genus 

is known to be implicated in compost processing and has been recognized for its potential as 

a biofertilizer. The Streptomyces genus, part of the Streptomycetaceae family, consists of 

over 700 species of filamentous bacteria that are gram-positive, neutrophilic, and facultative 

aerobic with a G+C DNA content higher than 70% [7]. Streptomyces bacteria life cycle is 

intricate and encompasses various stages, including vegetative growth, aerial hyphae 

formation, and sporulation phenomena [8,9]. The bld genes control aerial hyphae formation, 

while the whi genes control cell division and spore maturation [8,10]. Streptomyces is renowned 

for its ability to produce a huge number of secondary metabolites [11,12], such as antibiotics, 

antifungals, phytotoxins, plant growth regulators, herbicides, antivirals and antitumor [13–15] 

(Figure 1). These bacteria can colonize different ecological niches and use a wide range of 

carbon and nitrogen sources [16]. Optimal pH growth is between 6.5 and 8, but some strains 

can tolerate 9 or higher levels [9]. Streptomyces are widespread in soils and can resist drastic 

conditions such as long drought and nutrient scarcity, thanks to their mycelial growth and 

spore-forming abilities, so they are known for their ability to conquer different environmental 

biotopes [17], making them valuable biocontrol tools in agriculture. 

Streptomyces and other actinobacteria can be added to compost as inoculants to 

enhance composting process and improve final product quality [18–21]. These microorganisms 

can improve organic matter degradation, increase nutrient availability, and inhibit harmful 

microorganisms proliferation, leading to a more stable and high-value compost. Additionally, 

they can produce a wide range of secondary metabolites and plant hormones, which can 

improve their growth and health. 
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Figure 1. Mental map of Streptomyces virtues in various fields. 

The adverse impacts of chemical fertilizers are not limited to environmental and 

health concerns but also contribute to antibiotic-resistant bacteria development. The 

continuous application of these antimicrobial substrates in agriculture can lead to resistant 

strains emergence, which can give rise to serious threats to human health. Therefore, 

biofertilizers use, such as compost inoculated with Streptomyces, can help to reduce chemical 

fertilizers and antibiotics dependency in agriculture. The use of actinobacteria, especially 

Streptomyces, has been shown to be effective on herbicides and insecticides in soil [14,22,23]. 

However, despite their potential, very few actinobacteria-based products are currently 

available on the market. For this reason, lots of research is being conducted to develop 

efficient formulations containing actinobacteria as active ingredients and improve their shelf 

life and stability. 

One of the most notable applications of actinobacteria and their valued enzymes is 

the composting process. These microorganisms play a critical role in breaking down 

refractory plant materials, such as lignocellulose polymers, into easily metabolizable 

monomeric compounds [18,20]. This process not only helps to improve compost quality but 

also enhances soil fertility, making it an important basement for sustainable agriculture. In 

addition to composting, actinobacteria and their enzymes were found to have important 

applications in biotechnology and used in different industrial processes [24]. Therefore, further 

research and development of biofertilizers should be supported to reduce chemical fertilizers’ 

negative impact and essentially promote sustainable agricultural practices. 

The Moroccan government took proactive measures by implementing the Green 

Morocco Plan (GMP 2008-2020). This strategy was designed to revitalize agricultural sector 

and foster sustainable practices. With a specific focus on promoting organic agriculture and 
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compost utilization as a natural soil amendment, the GMP underscores the importance of 

environmentally sustainable approaches. To ensure the success of this endeavor, the 

government enacted regulations to support the adoption of compost in agricultural practices. 

In this review, we will discuss the potential of actinobacteria, especially 

Streptomyces, as antibiotics and their potential applications in sustainable agriculture, with a 

focus on their role in compost. We will examine the mechanisms by which they enhance 

compost quality and composting process. 

2. Overview of Streptomyces life cycle 

Actinobacteria is a large phylum within the Bacteria domain widely distributed in 

both terrestrial and aquatic ecosystems [25]. These Gram-positive bacteria are characterized 

by their high guanine and cytosine (G + C) content in DNA and are known for their 

filamentous nature, capable of forming both substrate and aerial mycelium [26]. The phylum 

encompasses 374 genera, with Streptomyces being the most dominant group. Non-

Streptomyces actinobacteria such as Actinomyces, Kitasatospora, Micromonospora, 

Nocardia, Micrococcus, Arthrobacter, and Rhodococcus are also present but are less 

frequently located under normal conditions and demand specialized methods for their 

isolation, preservation, and cultivation methods [26,27]. 

Streptomyces species’ life cycle begins with spore germination, initiated by the 

emergence of one or two germ tubes. Emerging shoots emerge at locations behind the tip and 

grow into a mesh-like structure of hyphae, known as vegetative mycelium (MV) (stage 1). 

Following nutrient depletion, the vegetative mycelium undergoes differentiation, 

transforming into aerial hyphae (stage 2). Ultimately, the aerial hyphae differentiate into 

elongated chains of spores (stage 3). The regulation of the polarisome, the bld gene family, 

and the whi gene family allow for manipulation and control of all three stages of this process 

(Figure 2) [8]. 



PMMB 2023, 6, 1; a0000345 5 of 46 

 

 

Figure 2. Streptomyces life cycle (Reproduced from [8]). 

Streptomyces life cycle can be divided into vegetative and reproductive phases [28], 

with some differences in solid and liquid cultures medium [28] and it is characterized by 

compartmentalized hyphae formation, which is a process that begins with spore germination 

in solid cultures or mycelial fragmentation in liquid cultures. In solid cultures, cycle life 

begins with spore germination and vegetative mycelium development, which grows deep into 

solid medium culture [29]. After a period of time, programmed cell death (PCD) occurs, 

leading to antibiotic production and aerial mycelium growth. In contrast to solid culture 

where spore germination is the initial step, liquid cultures of Streptomyces begin with 

compartmentalized hyphae formation (MI), which is followed by programmed cell death and 

secondary metabolite-producing mycelia development. In some Streptomyces strains, spores 

formation and aerial mycelium may be hindered. Streptomyces coelicolor proteomics 

analysis has demonstrated that expressed proteins during mycelial growth (MII) second stage 

are responsible for secondary metabolites production (Figure 3). Despite these findings, the 

mechanisms behind Streptomyces differentiation in liquid medium are not yet fully 

understood, and researchers are still trying to explore the relationship between pellet 

formation and secondary metabolite production [28]. 

The sporadic data accumulating on actinobacteria, and streptomycetes in particular 

are due to the mass discovery of a very high number of new species [30–33] which can solve 

thorny problems where there are blockages in medical, cosmetic and agri-food procedures 

[34]. These new species give hope of finding anti-cancer molecules, drugs to treat emerging 

diseases [35] or improve the living environment of mankind [36]. 
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Figure 3. General life cycle of Streptomyces in solid cultures (upper panels) and liquid cultures (lower 

panels) (Reproduced from [28]). 

 

3. Industrial application: extracellular enzymes from Streptomyces spp. 

Microbial-derived enzymes are widely sought after in the industrial sector because of 

their exceptional stability, productivity, and availability, as well as their economical nature 

and environmentally sustainable production methods. From an industrial standpoint, their 

practicality and ecological soundness further justify their use [37]. Streptomyces sp. constitutes 

a group of bacteria that are well-known for their unique characteristics and capabilities to 

produce a wide range of extracellular enzymes [38]. The latter finds many applications in 

various industrial fields (figure 4) [39]. Among the most commonly used enzymes produced 

by Streptomyces are amylase, protease, chitinase, xylanase, lipase, cellulase and laccase.  

3.1. Amylase 

Amylase (EC 3.2.1.1) is an enzyme responsible for the hydrolysis of starch into more 

accessible sugars like glucose and maltose. These simpler sugars serve as essential raw 

materials for diverse fermentative bioconversions, including ethanol, lactic acid, and citric 

acid fermentation. Amylases are highly regarded as one of the most significant enzymes for 

industrial use, due to their extensive applications [40], including brewing, detergent 

manufacturing, tanning, papermaking, textile production, biofuel production, bakery, and 

food processing [41]. This enzymatic activity (amylase) is still a subject of research and 

development to select new species with significant physico-chemical potential [42]. Many 
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species of Streptomyces have been used for amylase production [43–48]. Streptomyces amylase 

has been used in the field of medicine [43], and starch processing industry [49], especially raw 

starch processing [50]. Table 1 presents some of Amylase-Producing Streptomyces and their 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Diversity and functionality of extracellular enzymes produced by Streptomyces spp. 

 

Table 1. Amylase-producing Streptomyces strains and their applications. 

Strains Industry Application References 

Streptomyces spp NAA-28  Biotechnology Food, paper, detergent, fermentation, textile, 

and pharmaceutical sectors 

[51] 

Streptomyces griseus  (SGAmy) medicine Antibiofilm agent [52] 

Streptomyces lonarensis  NCL 716 Food  Maltooligosaccharides production [53] 

Streptomyces  erumpens  MTCC 7317 Food  Soluble starch and cassava starch hydrolysis [54] 

Streptomyces enissocaesilis  NRRL B-

16365 

Food  High fructose corn syrup production [55] 

Streptomyces spp Food  Bakery  [56] 

Streptomyces spp SNAJSM6 Biotechnology α-amylase production [57] 
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3.2. Protease 

Numerous research studies have documented the production of proteases from 

Streptomyces, making them extensively utilized in various industrial applications, notably in 

fields of food processing, cosmetic manufacturing, detergency, pharmaceuticals, chemical 

application, and waste management due to their adaptable nature [58]. They are also used in 

leather processing industries in the dehairing phase, thus leading to the total elimination of 

chemical application [59]. Proteases (EC 3.4) have been shown to exhibit a high degree of 

tolerance to diverse environmental challenges, including extreme pH levels, temperature, and 

salinity conditions, with most of them displaying this characteristic [60]. Additionally, 

proteases derived from Streptomyces spp. have been found to be effective in agro-industrial 

waste processes recycling, such as feathers, nails, hair, and plant waste [61]. Table 2 highlights 

a range of protease-producing Streptomyces strains and the various practical applications of 

these proteases. 

Table 2. Protease-producing Streptomyces strains and their applications. 

 

 

 

 

Strains Industry Application References 

Streptomyces gulbargensis  Healthcare industry Surgical instruments washing [62] 

Streptomyces koyangensis TN650 

  

Detergents Detergent formulations and non-

aqueous peptide biocatalysis 

[63] 

Streptomyces mutabilis  TN-X30 Detergent  Serine alkaline protease 

formulation 

[64] 

Streptomyces griseus K-1 Medicine, cosmetics, textiles Pronase P preparation [65] 

Streptomyces coelicolor A3(2) Biotechnology  Actinorhodin production [66] 

Streptomyces pactum   Feather industry  Chicken feathers disintegration [67] 

Streptomyces flavogriseus  HS1 Detergents Laundry detergent (Detergent 

additive) 

[68] 

Streptomyces nogalotor Ac 80 Leather industry  Goatskin depilation [69] 

https://www.sciencedirect.com.eressources.imist.ma/science/article/pii/S0141813015004080
https://www.sciencedirect.com.eressources.imist.ma/science/article/pii/S0141813015004080
https://www.sciencedirect.com.eressources.imist.ma/topics/biochemistry-genetics-and-molecular-biology/serine
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3.3 Chitinase 

Chitinase (EC 3.2.1.14) is a type of enzyme that is highly valuable in industrial 

settings due to its ability to break down chitin. Chitinases produced by certain actinobacteria 

have demonstrated remarkable characteristics, such as thermostability and pH tolerance, 

which make them highly appropriate for various industrial applications [70]. Streptomyces spp 

produces chitinases, which are used in the production of chitin derivatives, such as chitosan, 

a natural biopolymer with applications in the medical, agricultural, and food industries [71–

73]. Various Streptomyces strains, including Streptomyces thermoviolaceus, have been 

identified as producers of chitinases. These chitinases have been used to extract chitobiose, 

a compound that shows potential as an antioxidant with applications in both biomedical and 

food industries [74,75]. Table 3 displays certain Streptomyces strains that produce chitinase and 

their industrial applications. 

 

Table 3. Chitinase-producing Streptomyces strains and their applications. 

 

  

Strains Industry Application References 

Streptomyces alfalfa  ACCC 40021 Agriculture -Fungal Biocontrol  

-Chitine  conversion to N-acetyl-D-

glucosamine  

[76] 

Streptomyces sampsonii XY 2–7 Agriculture N-acetyl chitobiose production [77] 

Streptomyces spp CT02 Agriculture Biocontrol agents against 

phytopathogenic fungi 

[78] 

Streptomyces thermocarboxydus TKU045 Medicine Chitin oligomers  

 

[79] 

Streptomyces violaceoruber pChi Food industry Chitinase food enzyme  [80] 

Streptomyces griseorubens E44G Agriculture Fusarium biocontrol  [81] 

Streptomyces cavourensis SY224 Agriculture Anthracnose biocontrol  [82] 

Streptomyces  hygroscopicus SRA14 Agriculture Phytopathogenic fungi biocontrol [83] 

Streptomyces rochei A-1 Food industry Botryosphaeria dothidea post-harvest 

biocontrol  

[84] 
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3.4. Xylanases 

The principal constituent of hemicelluloses is xylan, a complex polysaccharide that is 

predominantly used in the pulp and biobleaching industry to improve pulp quality [85]. 

Xylanases (EC 3.2.1.8) are highly sought after in numerous industries due to their broad 

utility across various sectors, including pharmaceuticals, food processing, paper and cellulose 

manufacturing [86–88]. In addition, they are also utilized in beverage production, bakery, and 

probiotics [89]. Streptomyces sp. produce xylanases, which are utilized in the pulp and paper 

industry [90,91] and are also able to break down various agricultural residues such as straw 

waste and oil cake, resulting in enhanced biogas production [91,92]. The industrial application 

of certain Streptomyces strains that produce xylanase is presented in Table 4. 

Table 4. Xylanase-producing Streptomyces trains and their applications. 

 

 

3.5. Lipases 

Lipases (EC 3.1.1.3) have numerous applications in various industries, they are used 

in biodiesel production [101] through lipase-catalyzed transesterification and in flavor 

compounds synthesis by esterification in food, cosmetics, perfumery, and medicine [102]. 

Lipases are also used in bioremediation by lipid hydrolysis, in detergent formulation for 

hydrolyzing greasy and oily stains, plastic degradation, agrochemicals production, waxes, 

and biopolymers, along with their application in tea processing. Streptomyces-derived lipases 

serve as biosensors in probe technologies as well [102–104]. Additionally, they serve as 

degreasing agents in leather industry, in paper industry (for pitch treatment), and in textiles 

Strains Industry Application References 

Streptomyces galbus NR Pulp and paper industry Softwood kraft pulp bleaching [93] 

Streptomyces sp. AOA40 Food industry Fruit juice and bakery  [94] 

Streptomyces sp. Strain MS-S2 Biofuels industry Bioethanol  [95] 

Streptomyces sp. FA1 Food industry Chinese  bakery  [96] 

Streptomyces spp ER1 Beverage industry  Fruit juice clarification [97] 

Streptomyces megaspores DSM 41476 Beverage industry Brewing  [98] 

Streptomyces thermovulgaris 

TISTR1948 

Food industry Xylooligosaccharide  [99] 

Streptomyces spp QG-11-3 Pulp and paper industry Eucalyptus kraft pulp bleaching [100] 
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(as dewaxing, desizing, and scouring agents) [104]. Other important applications of lipases 

include treating oily wastewater [105]. Streptomyces exfoliates are known to produce lipases, 

enzymes that break down ester bonds in triglycerides into glycerol and fatty acids [106]. These 

lipases have a wide range of potential applications [107], including their use in fats catalyzing, 

cosmetics, diagnostics, and detergents [108]. Table 5 presents industrial application of some 

lipase-producing Streptomyces strains. 

Table 5. Lipase-producing Streptomyces strains and their applications. 

3.6. Cellulases 

Cellulases, also known as glucan 1,4-β-glucosidase (EC 3.2.1.74), break down 

cellulose, yielding glucose, cellobiose, and cello-oligosaccharides as primary products [117]. 

These enzymes work synergistically to degrade cellulose [118] and are the focus of numerous 

studies due to their vital role in biomass hydrolysis [119]. Due to the potential of cellulases to 

break down cellulosic biomass into glucose, these enzymes are in great demand in the global 

commercial market due to their wide-ranging applications across diverse industries [120,121]. 

In order to apply cellulases in different industries, such as detergents and leather, it is crucial 

to identify enzymes that are highly stable and capable of functioning under extreme pH and 

temperature conditions [122]. Certain Streptomyces sp. such as Streptomyces ruber, and 

Streptomyces rutgersensis, produce highly thermostable cellulases [123]. The use of cellulases 

is prevalent across multiple industries such as food, brewery and wine, agriculture, textile, 

detergent, animal feed, pulp and paper, as well as in research and development [120]. Table 6 

presents some of cellulase-producing Streptomyces sp. and their industrial applications.  

Strains Industry Application References 

Streptomyces sp. DPUA1566  Detergent Biosurfactant  [109] 

Streptomyces chromofuscus Food industry Phospholipase D  [110] 

Streptomyces violascens OC125-8 Wastewater treatement Oily wastewater  [111] 

Streptomyces spp OC119-7 Biodiesel production Enzymatic catalyst  [112] 

Streptomyces spp CS133 

 

Biodiesel production Oils transesterification [113] 

Streptomyces sp. SC734 Pharmaceutical industry Phosphatidylserine synthesis [114] 

 Streptomyces thermocarboxydus ME168 Cosmectic and food industry Sugar ester synthesis [115] 

Streptomyces clavuligerus CKD1119 Pharmaceutical industry Tacrolimus  [116] 

https://en.wikipedia.org/wiki/Enzyme_Commission_number
https://www.enzyme-database.org/query.php?ec=3.2.1.74
https://www.sciencedirect.com.eressources.imist.ma/topics/biochemistry-genetics-and-molecular-biology/phospholipase-d
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 Table 6. Cellulase-producing Streptomyces strains and their applications. 

 

3.7. Laccases 

Laccases are enzymes containing copper that have a widespread presence in nature 

[131] and have a diverse range of applications. Laccases have the potential to be used in various 

industrial applications due to their ability to act on a large range of substrates. These 

applications include treating industrial effluent, producing biofuels, bleaching, metabolizing 

drugs, remediating pollutants, decolorizing dyes, developing biosensor probes, and 

bioprinting [132]. These diverse applications make laccases a promising candidate for use in 

multiple industries. Laccase production by Streptomyces is influenced by various factors [133], 

including culture conditions, substrate composition, and enzyme inducers [134,135]. Despite 

having a relatively low redox potential, small laccases produced by Streptomyces possess a 

range of exceptional traits that make them appealing for use in commercial applications. 

Notably, their ability to exhibit unique substrate specificity and demonstrate remarkable 

effectiveness over a broad pH range, particularly. Additionally, their unusual resistance to 

inhibitors further broadens the scope of potential applications in various industries [136]. The 

presented table (Table 7) provides an overview of the different types of Streptomyces strains 

that produce laccase enzyme and their industrial applications.  

Strains Industry Application References 

Streptomyces drozdowiczii  Detergent and textile  Cellulase  [124] 

Streptomyces sp. MS-S2 Biofuels industry Sugar bioconversion to ethanol  [95] 

Streptomyces sp. C48 Agriculture Agricultural waste hydrolyzis [125] 

Streptomyces ruber Textile Cellulase  [126] 

Streptomyces roseochromogenes ATCC 13400 Waste treatment Cellulase  [127] 

Streptomyces sp. NAA2 Biofuels industry Biomass saccharification  [128] 

Streptomyces sp. T3-1 Biofuels industry Sugar bioconversion to ethanol  [129] 

Streptomyces clavuligerus MAC 9 Waste treatment Biogas production  [130] 

Streptomyces griseoaurantiacus ZQBC691 Biotechnology Ethanol production [130] 
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Table 7. Laccase-producing Streptomyces strains and their applications. 

Strains Industry Application References 

Streptomyces psammoticus Wastewater treatment 

industry  

Phenolic compounds removal [137] 

Streptomyces ipomoeae SilA Lubricant industry Eco-friendly oleogels production [138] 

Streptomyces psammoticus MTCC7334 Textile   Dye decolourization [139] 

Streptomyces cyaneus CECT 3335 Pulp and paper industry Kraft pulp bleaching [140] 

Streptomyces mutabilis A17 Environmental 

remediation  

Detoxification and bioremediation 

of sulfonamides and synthetic dyes 

[141] 

Streptomyces ipomoeae CECT 3341 Textile Dye degradation  [142] 

In addition to previously cited enzymes, Streptomyces is renowned for its ability to 

produce an extensive array of other enzymes that hold significant importance in various 

fields. For instance, Streptomyces strains are capable of producing azoreductase, which is 

used in azo dyes biodegradation in textile and paper industries [143]. Peroxidase is another 

enzyme produced by Streptomyces that has applications in environmental bioremediation, 

pulp and paper bleaching, and food processing [144]. Pectinase is an enzyme produced by 

Streptomyces strains that has applications in fruits and vegetables processing industries [145]. 

Phenazine-1-carboxylic acid dioxygenase is another enzyme derived from Streptomyces, 

which plays a role in organic pollutants [146]. Finally, Streptomyces is known to produce 

transglutaminase, an enzyme used in food processing to improve the texture and quality of 

meat products [147]. The wide range of enzymes produced by Streptomyces makes it a valuable 

organism for industrial and biotechnological applications.  

4. Streptomyces as a source of antibiotics 

Since the discovery of the first antibiotic in 1942, the genus Streptomyces has gained 

widespread acknowledgment as an invaluable reservoir of antibiotics, with 80% of today's 

antibiotics originating from this group. The first antibiotic, actinomycin, was isolated from 

Streptomyces antibioticus, followed by streptothricin and streptomycin, obtained from S. 

lavendulae and S. griseus, respectively [148–150]. Various antibiotics, including 

cephalosporins, chloramphenicol, tetracycline, nystatin, viomycin, lincomycin, vancomycin, 

rifamycin, kanamycin, and daptomycin, have been derived from different Streptomyces spp, 

as reviewed by [150–152]. Streptomyces is known to release antibiotics to hinder competitors in 

its telluric environment, which has led to the discovery of new compounds of commercial 
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interest with marketable yields [153]. For Streptomyces strains, interactions with biotic or 

abiotic factors are essential to increase chemical diversity and compound production, as is 

naturally found in soil. However, recent studies have shown that antibiotic production is 

commonly observed when closely related strains grow together or share biosynthetic 

pathways for secondary metabolites, but not in defense against toxins from competitors. 

Moreover, nutrient limitations and competitor’s presence can decrease antibiotic production 

output by Streptomyces [154]. As has been reviewed by Tyurin et al. [155] , elicitors are also 

used to enhance antibiotic production by Streptomyces bacteria, and several abiotic or biotic 

compounds such as metals, rare earth elements, dimethyl sulfoxide, ethanol, nanoparticles, 

and enzymes have been identified as elicitors [153]. In a recent study conducted by Quinn et 

al. [156] it was observed that Streptomyces strains isolated from soil possess the ability to 

combat multi-resistant Staphylococcus aureus and Pseudomonas aeruginosa infections. 

Genetic analysis of these strains revealed the synthesis of antibiotics resembling griseochelin, 

macrolactams, candicidin, and cypemycin [150]. Among the Streptomyces strains investigated, 

Streptomyces sp. 7NS3 was found to be associated with the freshwater snail Physa acuta [150], 

producing an angucycline-like aromatic polyketide with a broad-spectrum antibiotic activity 

against Gram-positive bacteria [157]. The genomic analysis of the 7NS3 strain unveiled a gene 

cluster that may be responsible for emycin A biosynthesis. Faddetta et al. [158] reported the 

importance of extracellular vesicles produced by Streptomycetes. These vesicles were found 

to contain a diverse array of metabolites, including antibiotics that can be delivered [150]. Also, 

Streptomyces thermoviolaceus is capable of producing a pigmented and pH-sensitive 

antibiotic known as granaticin. This antibiotic is synthesized at high temperatures, 

specifically at 45 °C, with optimal synthesis occurring at temperatures as high as 55 °C [159]. 

More than 50% of clinically effective antibiotics are derived from Streptomyces [160,161]. The 

exploitation of actinobacteria can be recommended to combat multidrug-resistant (MDR) 

pathogenic strains [162] and eradicate biofilms, which are the focus of much effort in the 

medical field to solve emergency public health problems; in particular, MRSA infections 

associated with medical devices [163–166]. Table 8 lists some of Streptomyces strains that have 

been shown to produce antibiotics.  
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Table 8. Selection of known antibiotic-producing Streptomyces strains. 

Streptomyces strains Antibiotics References 

Streptomyces sp. SM01 Picolinamycin [167] 

Streptomyces avermitilis phiSASD1 Endolysin and Holin [168] 

Streptomyces sp. PAL114 Mzabimycin A and B [169]  

Streptomyces sp. HS-NF-780 Glutarimide [170] 

Streptomyces lusitanus OUCT16-27  Grincamycin L and angucycline [171] 

Streptomyces althioticus MSM3 Desertomycin G [172] 

Streptomyces globusus DK15 Factumycin and tetrangomycin [173]  

Streptomyces ederensis ST13 Factumycin and tetrangomycin [173]  

Streptomyces thermoviolaceus SRC3 Streptazolin [174] 

Streptomyces puniceus AS13 Dinactin  [175]  

Streptomyces lydicus AZ-55 Natamycin  [176] 

Streptomyces avermitilis Avermictin [177] 

Streptomyces griseus IFO 13350 Streptomicin [178] 

Streptomyces bingchenggensis CP002047 Milbemicin [179] 

Streptomyces fradiae Tü 2717 Urdamycins [180] 

Streptomyces lunaelactis MM109T Lunaemycins [181] 

Streptomyces cinnamonensis Monensin [182] 

Streptomyces justiciae RA-WS2 Setomimycin [183] 

Streptomyces cattleya NRRL 8057 Thienamycin, cephamycin C, penicillin N [184] 

Streptomyces diastaticus TUA-NKU25 Surugamide  [185] 

Streptomyces sp. P-56 Nonactin [186] 

Streptomyces pluripotens MUM 16J Glycopeptide antibiotic   [187] 

 

5. Streptomyces as sources of antioxidants and anticancer molecules 

Microbial diversity offers a rich assortment of unique chemicals, serving as a valuable 

resource for cutting-edge biotechnology. Actinobacteria account for 42% of the more than 

23,000 documented microbial secondary metabolites, while fungi produce a similar 

proportion (42%), and eubacteria contribute the remaining 16% [188]. The investigation of 

molecules derived from Streptomyces for their anticancer effects remains relatively 

understudied. Indeed, the majority of cytotoxic antibiotics in current use are sourced from 

Streptomyces species. Among the "classic" drugs originating from Streptomyces is the 

anthracyclines family, which includes well-known medications like doxorubicin and 

daunorubicin [189,190].  Although limited in number, studies on the potential anticancer 

activities of Streptomyces-derived EPS (Exopolysaccharides) have shown promising results. 

Ramirez-Rodriguez et al. [191] conducted research on three Streptomyces strains (S. 

aburaviensis, S. gramineus, and S. psammoticus) [150]. These strains exhibited notable 
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cytotoxic activity against specific cancer cell lines, including prostate cancer (PC3), breast 

cancer (MDA-MB-231), and lung cancer (A549) [150]. In another study, Streptomyces 

carpaticus strain, isolated from marine sediments, was exploited to produce a high-value 

exopolysaccharide with significant toxicity against human breast (51.7%) and colon (59.1%) 

tumor cells [192]. Similarly, a marine Streptomyces hirsutus NRC2018-produced 

exopolysaccharide named EPSNC2, displayed notable and selective anticancer activity 

specifically against the Caco-2 cell line, without affecting other cell lines [150,193]. Besides this 

cell line (Caco-2), cancer cells models (HCT-116, HT-29, and SW480) were the subject of 

Streptomycetes antioxidant and anticancer activity confirmation [194]. 

Streptomycetes are occasionally competent in the biosynthesis of compounds with 

anticancer activity, powered by new molecules such as streptocarbazoles A and B, 

streptomyceamide C and neoantimycins A and B [195]. In a study by Ser et al. [196] , a 

Streptomyces strain, namely MUSC 136T, produces an extract containing cyclic peptides that 

have the potential to induce apoptotic cell death through the p53-associated pathway in colon 

cancer cells. Moreover, the researchers from the same group have discovered that in a 

mangrove environment, two Streptomyces strains, namely Streptomyces pluripotens MUSC 

137T and Streptomyces sp. MUM 256, produced intriguing cyclic dipeptides. The presence 

of these cyclic dipeptides, particularly in Streptomyces pluripotens MUSC 137T, has 

demonstrated the regulation of genes associated with essential biological processes, including 

cell cycle regulation, differentiation, apoptosis, cell adhesion, and angiogenesis [196]. These 

compounds exhibit similarities to anthracyclines and can induce apoptosis by modifying 

histones and inhibiting topoisomerase I activity [29]. Moreover, they have the potential to 

enhance the efficacy of DNA-targeted anticancer drugs. Some specific cyclic dipeptides, like 

pyrrolo[1,2a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl) [29], have been extensively 

studied and demonstrated growth inhibitory effects on various cancer cell lines, including 

MCF-7, HT-29, and HeLa [196]. 

Streptomyces also exhibit efficient production of a diverse array of bioactive 

compounds, including antioxidants. Through a screening program focused on actinobacteria, 

researchers have isolated numerous compounds with antioxidant properties [188,197]. Among 

these compounds, Streptomyces spp. has been found to produce various antioxidant 

isoflavonoids, such as 4', 7, 8-trihydroxyisoflavone. Notably, these compounds have also 

shown promising antitumor activity [198]. Extract derived from Streptomyces spp LK-3 

(JF710608) has been found to possess antioxidant activity, containing key components like 

daidzein-8-C-glucoside (puerarin), (-) gallocatechin gallate, sesamol, cyanidin-3-O-

rutinoside, and delphinidin [199]. Streptomyces, isolated from various environments, have 
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been discovered to possess antioxidant activity. For instance, Streptomyces lydicus A2 [200], 

Streptomyces spp. SRDP-H03 [201], and BI244 have demonstrated antioxidant activity as 

evaluated by the DPPH assay [188,202]. In a study conducted by Tan et al. [203], a strain called 

MUM212, isolated from mangrove soil, was found to possess remarkable antioxidant 

properties. The extract derived from MUM212 exhibited strong scavenging activity against 

various free radicals, such as superoxide anion, DPPH, and ABTS radicals. Furthermore, the 

extract demonstrated the ability to chelate metal ions. Another example is Streptomyces 

misionensis, which was isolated from soil in a mountain forest. This particular strain 

exhibited significant antioxidant capacity against nitric oxide, DPPH, and hydrogen peroxide 

free radicals [204]. According to the study conducted by Tan et al. [205], 

Streptomyces spp. MUM256 extract was found to possess antioxidant activity. It 

demonstrated the ability to scavenge superoxide anion radicals, with its effectiveness being 

dependent on the dosage. Table 9 presents some of the recently discovered Streptomyces 

strains with antioxidant capacities. 

Table 9. Recent discovered Streptomyces strains with antioxidants and anticancer capacities. 

Activity Strain  Source Secondary metabolites/Gene/Compounds References 

A
n

ti
o

x
id

a
n

t 
 

Streptomyces carpaticus K-11 Semi-desert 

soil 

flavonoids, alkaloids, glycosides, organic acids, 

alcohols, aldehydes, hydrocarbons, ethers  

[206] 

Streptomyces tunisiensis W4MT573222  
 

Sediments Pigment (divaric acid) [207] 

Streptomyces flavogriseus ADEM7 Soil sprA Gene [208] 

Streptomyces telluris sp. AA8T Rhizosphere 

soil 

3,4-dihydroxybenzaldehyde [209] 

Streptomyces sp. QZS11 Soil Ethyl-acetate crude extract [210] 

Streptomyces sp.MA4 Soil Selenium nanoparticles [211] 

Streptomyces sp. Sae4034 Rhizosphere 

soil 

Alkaloid,    terpenoid,    flavonoid,    and 

polyphenol 

[212] 

Streptomyces levis HFM-2 Human gut 2-Isopropyl-5-methyl-1-heptanol; 1-Octanol, 2-butyl-

, 3-Octadecene and 3-Eicosene  

[213] 

Streptomyces sp. MUSC 11, 125, 14, 

273b, 292, 5 

Mangrove soil Phenolic compounds, PKS I, PKS II genes,2,4-

dihydroxy-6-propyl benzoic acid, 2,4-bis(1,1-

dimethylethyl), pyrazine, pyrrole, cyclic dipeptides, 

hydrocarbons, alcohols, triterpene 

[214–219] 

A
n

ti
ca

n
ce

r
  

Streptomyces sp. MUM265, 14, 256 Mangrove soil Hydrocarbons, alcohols, phenolics, cyclic dipeptides, 

thioholgamide A/thioholgamide B, pyrrole, pyrazine  

 

[220–222]  

Streptomyces colonosanans MUSC 93JT Mangrove soil Ectoine synthesis gene [223] 

Streptomyces monashensis MUSC 1JT  Mangrove soil phenolic compounds, pyrazines and pyrrolopyrazines, 

Benzoic acid,  9H-Pyrido[3,4-b]indole 

[224] 
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6. Importance of Streptomyces in agriculture 

6.1. Streptomyces in agricultural biocontrol 

Actinobacteria produce a number of bioactive metabolites that are beneficial to both 

soil and plants. They also have the capacity to act as biocontrol agents [225], making plants 

more resistant to biotic and abiotic stresses [225,226]. A study done by Wang et al. [227] showed 

that certain actinobacteria (Streptomyces pactum Act12, S. globisporus Act7, and S. 

globisporus subsp. globisporus C28) can destroy the membrane of fungal pathogens 

attacking celery leaves.  Streptomyces griseoviridis, a light-colored actinomycete isolated 

from Sphagnum peat, is an example of a biocontrol agent that reduces damage caused by 

various soil and seed pathogens [228,229]. Antibiotic production by actinobacteria in soil, as 

shown in a study done by Trejo-Estrada et al. [230], is also helpful against plant pathogens. 

For instance, Streptomyces violaceusniger YCED9 produces antibiotics such as headache, 

Geldanamycin, and Guanidylfingine to counteract plant pathogens. Previous studies have 

demonstrated actinobacteria ability to enhance plant growth and effectively manage plant 

diseases [226,228,231,232]. Streptomyces strains are primarily recognized for their capacity to act 

as a biocontrol agent by producing potent volatile compounds, metabolites, and antibiotics 

that exhibit antipathogenic properties [233]. The illustration below (Figure 5) conceptually 

summarizes the virtues of Streptomyces spp consortium on good Vicia Faba L plant growth. 

 

 

Figure 5. Different roles of secondary metabolites from Streptomyces spp. in plant growth stimulation. 
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In another study done by Pang et al. [231], substances discharged from Streptomyces 

coelicolor, Streptomyces violaceusniger, and Streptomyces violaceusniger strains, including 

siderophore, chitinase, antifungal nigericin, and antibiotic geldanamycin [234], regulate stress 

metabolite and control hyphal development. While Streptomyces has been used successfully 

for biocontrol, one notable case is with rice plants [235]. In this study, two Streptomyces strains 

exhibited biocontrol potential by preventing pathogenic bacteria proliferation through 

secondary active metabolite production. As a result, the dissemination of Burkholderia 

glumae, a significant bacterial menace that triggers panicle blight in rice plants and poses a 

serious risk to rice yields, was successfully halted [235]. 

The fishing and aquaculture industries can benefit from actinobacteria virtues, and 

Streptomyces spp. in particular, and their metabolites can be used to protect marine foodstuffs 

against Vibrio-contamination [236–241]. Morocco, with its highly developed fishing and 

aquaculture industry, must take this thematic into consideration, as it opens up many routes 

of research to address the problems associated with serious foodborne infections, especially 

foodborne illness outbreaks. 

7. Role of Streptomyces in pesticide degradation 

Employing indigenous Streptomycetes for bioremediation in pesticide-contaminated 

environments proves to be a promising strategy, as these microorganisms are highly suited 

to thrive in soil and sediment habitats. Streptomyces strains have the advantage of potential 

metabolic diversity, mycelial growth habit, rapid growth rates, semi-selective substrate 

colonization, and genetic manipulability. Streptomyces can differentiate into spores that 

contribute to their spread and persistence, allowing their survival in soil for long periods, 

withstanding low nutrient concentrations and water availability [242]. Due to these advantages, 

different Streptomyces strains have been investigated as potential candidates for polluted 

environments bioremediation with various chemical pesticide families, including 

organochlorines, organophosphates, pyrethroids, ureas, and chloroacetanilides [242–244]. A 

study was conducted by Bourguignon et al. [245] have shown that Streptomyces strains isolated 

from sediments contaminated with pesticides are capable of thriving in the presence of 

methoxychlor. In another field, inoculation of biomixtures with Streptomyces sp. M7 

increased atrazine degradation [246,247]. Streptomyces sp. strains demonstrated enhanced 

propoxur degradation when starch was introduced as a co-substrate, which favored their 

growth in a liquid medium [248]. Streptomyces microorganisms have demonstrated excellent 

capabilities for the removal or conversion of multiple pollutants simultaneously, with Polti 

et al. [249] finding, both pure and mixed cultures of Streptomyces strains displayed efficient 

removal of lindane and Cr(VI) from soils contaminated with both substances. Pesticide 
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degradation by Streptomyces has been extensively explored in biotechnological process 

development aimed at reducing pesticide concentrations in different environmental matrices 

and preventing their infiltration into the environment, ultimately reducing human exposure. 

7.1. Streptomyces as biofertilizer 

Streptomyces is gaining increasing attention as a commercial biofertilizer among 

researchers. They possess the ability to biodegrade various agro wastes and produce different 

enzymes in soil by contributing to plant nutrition and growth [250]. Moreover, actinobacteria 

have been found to produce plant growth hormones like indole acetic acid (IAA) [251], 

expanding their potential applications as biofertilizers in agriculture [252]. Also, a study done 

by Omar et al. [253] have shown that Streptomyces sp. HM8 , Streptomyces thinghirensis 

HM3, Streptomyces sp. HM3, and Streptomyces tricolor HM10 produce IAA, siderophore 

and immobilized inorganic phosphate [253]. Inoculating fields with actinobacteria has been 

shown to improve plant growth and yield [254], as observed in greenhouse experiments with 

maize [255]. However, the limited plant development and growth qualities of some 

actinobacteria species hinder their potential contribution to sustainable horticulture practices. 

Streptomyces offers a valuable benefit through its capacity to enhance phosphate availability 

in soil [256]. These bacteria can transform bound phosphate into an accessible form by 

producing various phosphate-solubilizing acids and phytase enzymes. While the exact 

mechanism of acid-mediated phosphate solubilization is not fully understood [257], certain 

actinobacteria species like Streptomyces, Micromonospora, and Gordonia have been shown 

to exhibit phosphate-solubilizing activities [258]. 

According to recent research [259], biofertilizers made with strains of Bradyrhizobium 

and Streptomyces griseoflavus have been found to promote root and shoot growth in mung 

beans, soybeans, and cowpeas. This study also found that these biofertilizers increase 

nodulation, nitrogen fixation, phosphorus, and potassium uptake in plants, resulting in higher 

seed yields. Streptomyces, which can establish colonies in the rhizosphere or plant tissue, has 

been observed to maintain a symbiotic relationship with plants that enhances their growth 

[233].  A recent study done by Domínguez-González and his collaborators [260] suggests the 

use of Streptomyces spp as a biofertilizer in a biofilm form that uses perlite mineral as a 

carrier. This approach is recommended as an alternative to enhance crop production over an 

extended period and to improve plant health owing to its advantages. Notably, research done 

by Omar et al. [253] demonstrated the efficacy of Streptomyces as a biofertilizer in promoting 

cucumber growth and nutrient uptake under greenhouse conditions. Additionally, 

Gopalakrishnan et al. [261] found that the usage of Streptomyces strains as biofertilizers could 

improve chickpea crop’s yield and growth.  
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Understanding Streptomyces’s potential in agriculture is crucial for sustainable 

farming practices. Table 10 highlights that the latest strains of Streptomyces from research 

conducted in 2022 and 2023 have shown promising results in disease control, increased plant 

growth, and yield enhancement. 

Table 10. Summary of the latest Streptomyces strains and their agricultural significance. 

Strains Crops/ plants Results References 

Streptomyces chrestomyceticus STR-2   

 

Rice 

 

-Siderophore synthesis, IAA, and phosphate-

solubilizing agents, 

-Plant growth promotion 

-disease reduction caused by Magnaporthe oryzae 

Cav 

[262] 

Streptomyces spp. STRM103 and STRM104, 

and STRM304 

Tomato  

Banana  

-Controlling Fusarium Wilt Disease 

-Growth Promotion [263] 

Streptomyces griseus KAI-26 and MMA-32 

Streptomyces  albus KAI-27 

Chickepea 

 

-Growth promotion 

- PGP traits enhancement   

-Antioxidants and grain nutrients increment 

 

[264] 

 

Streptomyces albus (CAI-24 and KAI-27 

Streptomyces griseus MMA-32 Pearl millet -Improving yield and nutrient content [265] 

Streptomyces tuirus AR26 Pepper fruit -Development of fruit rot symptoms inhibition [266] 

Streptomyces rochei ASH 

 

 

Sorghum 

 

 

-Promote plant growth  

-Inhibition mycelial Rhizoctonia solani and 

Sclerotinia sclerotiorum growth  

[267] 

 

 

Streptomyces sp. UTMC 313 

Helianthus 

annuus -Growth improvement [268] 

Streptomyces sp. HN6 Cowpea -Plant growth promotion [21] 

Streptomyces sp HM8 , Streptomyces 

thinghirensis HM3 , Streptomyces sp HM2, 

and Streptomyces tricolor HM10   

 

Cucumber 

 

-Production of IAA, siderophore, and immobilized 

inorganic phosphate 

-Growth improvement [253] 

Streptomyces chilikensis strain RC1830 

Rice 

 

-Preventing the F. oxysporum wilting/root rot 

disease  

-Promoting growth [269] 

Streptomyces sp TOR3209 Tobacco  

-Developement of volatile organic compounds  

-Growth improvement [270] 

Streptomyces sp. SA5 

 

Tomato plants 

-Plant growth-promoting agents  production, 

siderophore, IAA , and ACC deaminase, 

phosphatase enzymes [271] 
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Streptomyces luteogriseus -8 Soybean Yield improvement  [272] 

Streptomyces sp SS12 Bell pepper 

-Increase fruit yield  

-Control plant disease [273] 

Streptomyces sp KS3 Rice Growth and productivity improvement [274] 

Streptomycetes kanamyceticus CIAD-CA45 
Phaseolus 

vulgaris 

 

-Indole-3-acetic acid (IAA) production 

-Increase hypocotyl diameter and chlorophyll 

content  

-Increase biomass accumulation [275] 

Streptomycetes misionensis CIAD-CA27 
Arabidopsis th

aliana 

 

-Indole-3-acetic acid (IAA)  

-Growth improvement, 

-Increase biomass accumulation, ,shoot fresh 

weights and the root fresh weights [275] 

Streptomyces sp UTMC 1478 

 

Zea mays 

 

-Plant phosphorus uptake increment 

increased shoot dry weight and leaf chlorophyll 

content [276] 

Streptomyces tunisiensis AI, Streptomyces 

enissocaesilis BYC, Streptomyces 

saprophyticus DE2 and Streptomyces 

cyaneofuscatus CYM 

Sugar beet 

 

-Growth and yield parameters improvement   

-High protection against root rot disease [277] 

 

8. Streptomyces for boosting the composting process  

8.1. Inoculation techniques 

Microbial inoculation methods in the composting process involve competent 

microorganisms in addition to the compost mixture to enhance the waste degradation rate 

and improve the final quality of compost. These microorganisms can either be isolated from 

microbial communities according to specific selection pressure or developed through culture 

mixtures such as soil, manure, and straw [278]. The inoculum can be a single strain or a mixture 

of efficient microorganisms inoculum [278,279], or matured compost sample [278,280].  

Currently, researchers are exploring the use of a combination of microorganisms that work 

together synergistically, known as a mixed inoculant [281–283]. The addition of microbial 

inoculants improves temperature profile and ammonia emissions by proliferating mesophilic 

and thermophilic bacterial populations. It also enhances enzymatic activity and minimizes 

the initial lag time of biological processes, leading to accelerated composting. Microbial 

inoculation techniques can efficiently decrease the release of odorous emissions, primarily 

volatile organic compounds (VOCs), while producing compost with elevated nutritional 

content [284,285]. Inoculating competent microbes such as Streptomyces into compost can 

significantly improve the resulting compost quality; one effective way is through liquid 
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culture inoculation. This method involves preculture elaboration, evenly distributing it onto 

the compost pile, and regularly turning it to ensure microorganisms mixture (Figure 6).  

Microbial inoculum can be introduced during various stages of the composting process, 

including single, two-stage, or multi-stage applications. The addition of inoculum at different 

stages exhibits a notable influence on the physicochemical parameters of the composting 

process [286]. 

Figure 6. Streptomyces inoculation method. 

a): Soil; b): Competent Streptomyces strains isolation; c): Streptomyces biomass growth ; d): Single or multi-stage garbage 

inoculation; e): Composting phases and f): Final product (good quality compost) 

 

8.2. Streptomyces impact on composting process   

Streptomyces are naturally occurring soil-dwelling bacteria. They are well known for 

their capacity to develop an extensive diversity of enzymes, which makes them an excellent 

choice for use as additives for solid waste composting [278]. These bacteria can accelerate 

organic matter breakdown and promote a more effective composting process. One of the key 

advantages of using Streptomyces strains in composting, is their ability to tolerate high 

temperatures and other drastic conditions. This means they can thrive in the high 

temperatures that are often present in composting environments, which is essential for rapid 

organic matter break. As they break down complex organic molecules, they release important 

nutrients into the soil, improving its quality and promoting other beneficial microorganism’s 

growth [225]. Streptomyces are also effective in breaking down a wide range of organic 

materials, including plant matter, animal waste, and food residues [287]. This makes them an 
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excellent choice for use in solid waste composting, as they can reduce waste volume and 

promote more sustainable waste management practices. In addition to their composting 

benefits, Streptomyces can also help to reduce odors and prevent harmful pathogens’ growth 

in composting environment [288]. This can help to create a protected and more pleasant work 

setting for those involved in composting process. Overall, the use of Streptomyces as 

additives for solid waste composting can provide a number of benefits, including more 

efficient and effective composting, leading to improvement of soil quality and a more 

sustainable waste management solution [289].  

While multiple research projects have investigated the use of various microorganisms 

as additives in composting problems. The research done on Streptomyces bacteria in this 

application is relatively limited. Numerous studies have examined the impact of microbial 

inoculation on composting quality and efficiency. In general, a time reduction in the 

degradation process due to microbial activity is an indicator of good quality compost 

[278,279,290]. For example, Wei et al. [291] studied lignocellulose degradation and found that 

inoculation with actinobacteria accelerated enzyme production, such as CMCase, xylanase, 

and lignin peroxidase, leading to increased organic matter degradation rates. Zhao et al. [292] 

inoculated a cellulolytic strain of actinobacteria into dairy waste composting, resulting in 

cellulase activities and humic substance content improvement [278]. Manu et al. [293] conducted 

a decentralized composting of household wet biodegradable waste. The introduction of 

specific inoculation in the composting process led to a significant reduction in composting 

time, resulting in a composting period of 30-36 days. Furthermore, the compost produced 

was free from pathogens. As indicated by a study done by Jusoh et al. [284], adding microbial 

agents such as Streptomyces clavuligerus, Aeromonas cavia, Corynebacterium 

pseudotuberculosis, Shinella sp and Rhizobium, which were identified from rice straw 

compost, to the composting pile, resulting in an acceleration of organic matter and insoluble 

roughage degradation. This was due to an enhancement of key enzymes, such as CMCase 

and xylanase, as well as core microbial metabolisms. Numerous research studies have been 

conducted to investigate the impact of introducing various strains of Streptomyces bacteria 

into compost. For example, Shivlata and Satyanarayana [294] observed that inoculating 

compost with Streptomyces spp and Micromonospora sp. resulted in complete degradation 

of yeast debris and reduced compost odor. In addition, Mansour and Mohamedin [295] and 

Abdulla and El-Shatoury [296] found that cellulolytic actinobacteria such as Streptomyces 

thermodiastaticus produce extracellular enzymes that can improve nutritional characteristics 

of compost by breaking down pathogenic fungi cells. A study conducted by Chi et al. [19] 

found that inoculating cellulolytic Streptomyces griseorubens in pig manure and rice straw 

compost increased temperature, extended thermophilic phase, and improved nutrient content. 
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Additionally, the use of multiple thermotolerant cellulolytic Streptomyces spp and 

Actinobacteria as inocula in different composting stages enriched cellulase activities, 

enhanced cellulose degradation, and increased humic substances content, thus influencing 

actinobacteria community structure in dairy manure-corn straw composting [286,292].  

The potential of Streptomyces spp in pollution degradation in effluent from paper pulp 

has been proven through the detection of breakdown products observed after incubation 

period [297]. Furthermore, a recent study done by Kocak et al. [298] found that The introduction 

of Streptomyces spp. to the compost system resulted in significant changes, including the 

inhibition of other microbiota members. Additionally, the presence of the added strain led to 

noticeable alterations in organic matter degradation. In addition, Jia et al. [299] noted that the 

inclusion of a blend of Aspergillus, Penicillium, Bacillus, and Streptomyces improved 

cellulose degradation in mushroom residue and wood chips by enhancing the enzymatic 

activity of the bacterial community. These studies demonstrate the potential of Streptomyces 

spp. and other microorganisms to enhance organic matter degradation in different 

composting systems. Overall, results indicate that Streptomyces can be used as a potential 

bio-fertilizer that may replace conventional fertilizer in various situations [21]. Further 

research is required to develop a formulation that contains these viable strains in combination 

with other beneficial microorganisms (co-culture) [300] for commercial application. 

8.3. Methods of Streptomyces inoculation for soil and crop enhancement 

The use of beneficial microorganisms for enhancing soil and crop productivity [225] 

has gained significant attention in recent years as an alternative to conventional chemical 

fertilizers. Among these beneficial microorganisms, Streptomyces species have been found 

to play a key role in soil health and plant growth promotion. However, there is limited 

research on the application of Streptomyces-enriched compost on soil and crops. Currently, 

no studies have examined Streptomyces-enriched compost application to soil/crop. However, 

a study on the use of effective microorganisms-enriched manure exists, which could also be 

applied to compost. Hidalgo et al. [301] suggests various methods for effective 

microorganisms-enriched manure application, depending on manure type. One method is 

direct soil inoculation with different effective microorganisms (EM) preparations before 

sowing or during cultivation. Another method is fertigation, where EM formulations are 

added to the soil through manure irrigation, with dilutions ranging from 1:1000 to 1:5000 

[302]. Spraying EM-enriched liquid manure on plant leaves is also an option for pest control 

and prophylactic disease treatment. The recommended dilution for spraying is 1:1000, but 

1:5000 or 1:2000 dilutions can be used depending on culture type. The required EM dose can 
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vary based on the amount of manure to be turned into humus, ranging from 20 to 40 liters 

per hectare for diluted preparations and 1-3 liters per hectare for more concentrated 

commercial preparations [303]. It is advisable to increase the added EM dose if soil contains 

high levels of undecomposed organic matter and to dose EM in the spring season whenever 

possible, with increased doses if no autumn treatment has been carried out, to ensure soil 

proper inoculation with EM. The methods proposed by Hidalgo et al. [301] for enriching 

manure with effective microorganisms may face challenges in terms of reproducibility. The 

lack of standardized protocols for various application methods and the absence of detailed 

information on the specific EM formulations used and environmental factors may affect the 

outcomes, making it difficult for other researchers to replicate the methods accurately and 

achieve consistent results. It is also important to consider the potential environmental impact 

of using manure-based products and to follow appropriate management practices to mitigate 

risks. While these methods may be effective in certain settings, further research is necessary 

to determine their reproducibility and reliability across different conditions. Alternative 

approaches such as composting and crop rotation can be used to promote soil health and 

reduce synthetic fertilizers reliance. Overall, a combination of different soil management 

techniques, including the use of EM-enriched compost, can help to promote sustainable and 

resilient agriculture. By carefully considering the potential benefits and limitations of 

different approaches, farmers and growers can make informed decisions to optimize soil 

health and productivity while minimizing environmental impact. 

8.4. Challenges and recommendations for Streptomyces inoculation in composting  

Green Morocco Plan (GMP 2008-2020) is a national strategy launched by the 

Moroccan government to modernize the agricultural sector and improve its sustainability. 

One of the key components of this plan is organic agriculture promotion and the use of 

compost as a natural soil amendment [304]. To support this initiative, the Moroccan 

government has enacted regulations that promote the use of compost in agriculture and 

encourage farmers to adopt sustainable practices. Morocco passed the Organic Agriculture 

regulation, which regulates organic production and marketing to promote organic inputs use 

such as compost. The government also launched the National Compost Strategy, which aims 

to develop a network of composting facilities across the country and increase compost use in 

agriculture [305]. The strategy includes measures such as providing technical assistance and 

financial motivation to farmers who adopt compost-based practices, promoting research and 

development in composting technologies, and improving the quality and consistency of 

compost through standardization and certification. However, the government's commitment 

to promoting sustainable agriculture and reducing dependence on synthetic inputs remains 
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strong. Development of a robust composting industry is seen as a key component for 

achieving these goals. Despite these efforts, implementation of these regulations has faced 

several challenges, including the lack of infrastructure for compost production and 

distribution, limited awareness of farmers to compost, and the high cost of organic inputs. 

However, to overcome these challenges, the Moroccan government is working to establish a 

network of composting facilities and promote the application of compost as a cost-effective 

and environmentally friendly alternative to synthetic fertilizers by adopting compost-based 

agriculture practices [306]. The kingdom of Morocco aims to improve soil health, reduce 

greenhouse gas emissions, and promote sustainable and inclusive economic growth [307]. In 

the context of the Moroccan government's efforts to promote sustainable agriculture with 

compost, our study focuses on improving the composting process by employing 

microorganisms such as Streptomyces. The use of Streptomyces bacteria in composting is an 

innovative approach with potential benefits for treating waste. However, several challenges 

need to be addressed to develop a cost-effective and environmentally sustainable technology 

[308]. One key challenge is determining the appropriate technique and concentration of 

Streptomyces inoculation for optimal composting. Research is necessary to elucidate 

Streptomyces bacteria mechanisms during composting to identify the most suitable 

inoculants, taking into account their functional, physiological, adaptability, and stability. 

Moreover, there is a lack of large-scale studies on the use of Streptomyces bacteria in 

composting, and further investigations are needed to confirm the benefits observed in small-

scale studies. Furthermore, developing economically viable technological procedures for 

Streptomyces inoculant production is crucial, including the utilization of inexpensive 

resources such as plant-based substrates or agro-waste for inoculant propagation. Finally, 

research in modelling and optimizing the composting process by engineering processing 

techniques is necessary to ensure the composting sustainability process without 

compromising the quality of the final product [309]. By developing more efficient and effective 

composting practices, we hope to contribute to the broader goal of promoting sustainable 

agriculture and reducing environmental impact in Morocco and beyond. 

9. Conclusion 

In conclusion, this review highlights the significant contributions of Streptomyces to 

human well-being and their versatile potential in various sectors. Streptomycetes play a major 

role in agriculture by replacing chemical fertilizer, enhancing soil health through 

bioremediation, and acting as biological control agents for pests. Moreover, their role in the 

production of antibiotics, antioxidants and anticancer agents in the medical and therapeutic 

sectors opens up new possibilities for high-value molecule creation. Additionally, 
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actinobacteria contribute to biotechnology by producing valuable enzymes for various 

industries, leading to considerable profit margins. Finally, we can highlight new trends in 

nanomedicine, where streptomycetes can contribute to solving the problems of non-solubility 

of certain active ingredients. This is possible via the contribution of these micro-organisms 

in the production of active principle shuttle molecules that fail to reach targeted cites by 

therapeutic activities through the design of nanoparticle-based drug delivery systems 

(NDDS)[310]. Overall, the numerous virtues of these microorganisms warrant further research 

and development to uncover their untapped potential, making them truly magical 

microorganisms for the betterment of our planet and human life. 
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