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Abstract: Biological data obtained from sequencing technologies is growing exponentially. 

Multi-omics data is one of the biological data that exhibits high dimensionality, or more 

commonly known as the curse of dimensionality. The curse of dimensionality occurs when 

the dataset contains many features or attributes but with significantly fewer samples or 

observations. The study focuses on mitigating the curse of dimensionality by implementing 

Support Vector Machine – Recursive Feature Elimination (SVM-RFE) as the selected feature 

selection method in the lung cancer (LUSC) multi-omics dataset integrated from three single 

omics dataset comprising genomics, transcriptomics and epigenomics, and assess the quality 

of the selected feature subsets using SDAE and VAE deep learning classifiers. In this study, 

the LUSC datasets first undergo data pre-processing, including checking for missing values, 

normalization, and removing zero variance features. The cleaned LUSC datasets are then 

integrated to form a multi-omics dataset. Feature selection was performed on the LUSC 

multi-omics data using SVM-RFE to select several optimal feature subsets. The five smallest 

feature subsets (FS) are used in classification using SDAE and VAE neural networks to assess 

the quality of the feature subsets. The results show that all 5 VAE models can obtain an 

accuracy and AUC score of 1.000, while only 2 out of 5 SDAE models (FS 1000 & 4000) 

can do so. 3 out of 5 SDAE models have an AUC score of 0.500, indicating zero capability 

in separating the binary class labels. The study concludes that a fine-tuned supervised 

learning VAE model has better capability in classification tasks compared to SDAE models 

for this specific study. Additionally, 1000 and 4000 are the two most optimal feature subsets 

selected by the SVM-RFE algorithm. The SDAE and VAE models built with these feature 

subsets achieve the best classification results. 
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1. Introduction 

Despite the availability of various cancer treatments, cancer continues to be a leading 

cause of death worldwide. Among the fatal types of cancer is lung cancer [1]. In 2020, it 

accounted for 11.4% of total cancer cases and took the lives of around 1.8 million people [2]. 

Omics refers to several fields of study in life sciences that focus on much information to 

understand life [3]. Multi-omics, on the other hand, is formed when two or more omics types 

are combined to allow the study of the biological phenomenon in a more holistic way, which 

in turn improves the prognosis and predictive accuracy of disease phenotype, allowing a 

better treatment and prevention of cancers to be facilitated [4]. The study primarily focuses 

on the curse of dimensionality of multi-omics data, also known as the large p small n problem, 

whereby the multi-omics dataset has a small number of samples (n) and a large number of 

features (p) [5]. The nature of multi-omics data analysis that requires the researchers to merge 

multiple omics data into one usually limits the number of observations for the multi-omics 

data [6], as the integration process requires the data from the same individual or patient to 

exist in every omics type involved in the study [7].  

The study employs Support Vector Machine – Recursive Feature Elimination (SVM-

RFE) as the feature selection algorithm to address this problem. The study aims to use SVM-

RFE to select only the relevant features from the lung cancer multi-omics data to develop 

better deep-learning classifiers. Next, Stacked Denoising Autoencoder (SDAE) and 

Variational Autoencoder (VAE) are used in the binary classification of the selected feature 

subsets. The objectives of the study include: 1) to study and understand the algorithm of 

SVM-RFE, SDAE, and VAE, 2) to determine suitable parameters for the selected algorithms 

and apply appropriate fine-tuning methods to them, and 3) to validate and verify the 

performance of SVM-RFE using SDAE and VAE. 

The remaining sections of this paper are structured as follows: Section II provides a 

comprehensive review of relevant literature for this study, Section III outlines the methods 

and procedures employed to conduct the analysis, Section IV presents the results and 

subsequent discussion of the model performance, and finally, Section V provides the 

conclusion. 

2. Materials and Methods  

The experimental workflow of the research is summarized in Figure 1. In general, the 

procedure of the study starts with data acquisition, followed by data cleaning, multi-omics 

integration, feature selection, and classification. The results and findings of the study are then 

discussed. 
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kl 

Figure 1. The experimental workflow of the research. 

2.1. Data Acquisition 

This study's lung cancer omics dataset is retrieved from an open-source website 

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html. The dataset comes in a 

package of 4 files: the 3 omics datasets (i.e., gene expression, DNA methylation expression 

& miRNA expression) and 1 clinical dataset. All 4 datasets contain the patient ID, vital for 

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
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column concatenation in multi-omics integration. A quick summary of the dimensions of 

each dataset is tabulated in Table 1. 

Table 1. Summary of the dimensions of the raw lung cancer omics datasets. 

Data  Omics field Num. of features Num. of patients 

Gene expression Genomic 20531 553 

DNA methylation Epigenomics 5000 413 

miRNA  Transcriptomics 1046 388 

Clinical data - 626 127 

The class labels in the clinical dataset are binary, containing one positive outcome 

(has lung cancer) and one negative outcome (no lung cancer). The positive outcome is 

denoted as "Primary Tumour" while the negative outcome is denoted as "Solid Tissue 

Normal". 

2.2. Data Preprocessing 

The acquired datasets undergo a data-cleaning process to prepare the data for further 

analysis. The 2 types (i.e., omics dataset & clinical dataset) are cleaned differently. The omics 

datasets are cleaned by performing data transposition, imputation, normalization, and 

variance threshold analysis. The patient ID and the class label are extracted from the clinical 

data. 

2.2.1. Data Transposition 

Despite being labeled as pre-processed, the omics datasets still contain certain caveats 

which require further processing. First, the rows and columns of the data of the raw omics 

dataset are inverted and misleading. Data transposition is performed on all 3 omics datasets 

to correct the orientation of the data to be represented. After data transposition, the rows now 

represent the samples/instances corresponding to the patient ID, while the columns now 

represent the omics expression values. The dimensions of the omics datasets before and after 

data transposition is summarized in Table 2. 

Table 2. The dimensions of the omics datasets before and after data transposition. 

Dataset 
Dimension (row, column) 

Raw dataset After Data Transposition 

Gene expression (20531, 552) (552, 20531) 

DNA Methylation (5000, 412) (412, 5000) 

miRNA  (1046, 387) (387, 1046) 
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2.2.2. Data Imputation 

The next step was data imputation. These steps involved checking for duplicated rows 

and missing values (or NaN) and imputing them with a value zero, as missing values tend to 

reduce the study's statistical power and produce biased estimations [8]. The result of the 

checking shows that all 3 omics datasets contain neither duplicated rows nor missing values.  

2.2.3. Data Normalization and Variance Threshold Analysis 

The omics datasets then undergo data normalization. The values of each feature in 

each omics dataset are adjusted and scaled between 0 and 1 to improve the data quality and 

the machine learning model [9]. The data cleaning phase ends with variance threshold (VT) 

analysis. Zero variance features (i.e., features with only one unique value or the value for 

each sample in a particular feature are the same) are dropped as they do not provide any 

predictability to the output class [10]. A total of 287 and 160 zero variance features are 

removed from the gene expression and miRNA expression omics data, respectively. The 

DNA methylation expression dataset contains no zero-variance feature. The summary of the 

VT analysis is shown in Table 3. 

Table 3. The dimensions of the omics datasets before and after variance threshold analysis. 

Dataset 
Dimension (row, column) 

Before VT After VT 

Gene expression (552, 20531) (552, 20244) 

DNA Methylation (412, 5000) (412, 5000) 

miRNA  (387, 1046) (387, 886) 

Clinical Data (626, 127) (626, 127) 

2.3. Multi-omics Integration 

In multi-omics integration, the columns from each cleaned single omics dataset are 

concatenated by using the patient ID as an index. Meaning the integrated multi-omics dataset 

will only contain the information of the patients whose information is present in all 4 datasets. 

The summary of the datasets before and after data preparation and multi-omics integration is 

shown in Table 4. 
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Table 4. Summary of the datasets before and after data preparation and multi-omics integration. 

Dataset 

Dimension of the Dataset (row, column) 

Raw dataset 
Data 

Transposition 

Variance 

Threshold 

Multi-omics 

Integration 

Gene expression (20531, 552) (552, 20531) (552, 20245) 

(344, 26131) 

DNA 

Methylation 
(5000, 412) (412, 5000) (412, 5000) 

miRNA  (1046, 387) (387, 1046) (387, 886) 

Clinical Data (626, 127) (626, 127) (626, 1) 

It is worth noting that the class label distribution before and after multi-omics 

integration has changed drastically. Table 5 summarizes the class label distribution for each 

omics dataset, including the integrated multi-omics data. Before integration, each single 

omics dataset has a class label distribution of around 90:10 for Primary Tumour and Solid 

Tissue Normal. The distribution changed to 99:1 when the multi-omics data was integrated. 

The multi-omics data is now severely imbalanced. 

Table 5. Class label distribution with percentage for each omics dataset. 

Omics Primary Tumour Solid Tissue Normal Total Sample 

Gene expression 501 (90.8%) 51 (9.2%) 552 

DNA methylation 370 (89.8%) 42 (10.2%) 412 

miRNA expression 342 (88.4%) 45 (11.6%) 387 

Multi-omics Data 341 (99.1%) 3 (0.9%) 344 

The integrated multi-omics dataset undergoes data splitting, as shown in Figures 2a 

and 2b. First, the multi-omics data is split into the train-test set with a ratio of 70:30, which 

empirically produces the best result [11]. For feature selection with SVM-RFE (Figure 2(a)), 

the train set is used in stratified 2-fold cross-validation (CV). For classification with SDAE 

and VAE (Figure 2(b)), the train set is further split into train and validation sets with a 70:30 

ratio. The class distribution of the train and test set after data splitting are shown in Figure 3.  
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Figure 2a. The data splitting of the multi-omics data for feature selection. 

 

Figure 2b. Data splitting for deep learning unsupervised training. 

 

Figure 3. The class distribution of the multi-omics data for the train and test set. 
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2.4. Feature Selection 

With the integrated multi-omics data, the study proceeds with a wrapper feature 

selection SVM-RFE. Wrapper methods use a classification algorithm to assess the 

significance of data features. The classifier is encapsulated in a search algorithm to identify 

the optimal subset of features [12]. SVM-RFE is responsible for selecting the 𝑛 most relevant 

features, whereby 𝑛 is the number of features to be selected. The study aims to select several 

subsets of features to assess the most optimal number of features to be explicitly selected for 

this study. A total of 20 feature subsets (abbreviated as FS from now on) are selected, which 

range from 20000, 19000, 18000, …, 1000. 

The most optimal set of hyperparameters for SVM-RFE is determined using grid 

search. The hyperparameter grid used in the search is summarized in Table 6 [13]. The "C" 

parameter controls the tradeoff between the correctly classified instances and the capability 

of the hyperplane to separate instances. "linear" kernel is the only kernel that produces feature 

importance as one of its outputs for the RFE algorithm to rank the feature. "step" is the 

hyperparameter for RFE, whereby it decides the number of features to remove in each 

iteration. 

Table 6. Hyperparameter grids used for SVM-RFE. 

Hyperparameter Values 

C 0.1, 1, 10, 100 

Kernel linear 

Step  1, 2, 3 

To obtain early insight regarding the 20 selected feature subsets, an SVM model with 

a similar set of hyperparameters shown in Table 6 is used to classify each feature subset. A 

2-fold CV is employed to obtain a more generalized result. The omics composition is also 

observed for each feature subset. Ultimately, the output of the SVM-RFE algorithm is the 20 

selected feature subsets, which are used as inputs for the deep learning models for 

classification.  

2.5. SMOTE 

The issue with data imbalance for the integrated multi-omics data, addressed in 2.3 is 

handled here. The study employs a data oversampling, namely SMOTE, on the training set. 

SMOTE creates synthetic examples to oversample the minority class instead of replacing 

them with unfamiliar samples [14]. The hyperparameter chosen for SMOTE is listed in Table 

7. "sampling_strategy" is set to 1 so that the newly synthesized instances with minority class 

label (Solid Tissue Normal) will match the number of the instances with "Primary Tumour". 

"k_neighbors" decides the number of nearest data points to use as references to synthesize 

new data points. It is forced to set to 1 since "k_neighbour" has to be smaller than the number 

of minority classes. "random_state" is set to 42 to allow reproducible results.  
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Table 7. Hyperparameters used for SMOTE on train data. 

Hyperparameters Settings 

sampling_strategy 1 

k_neighbors 1 

random_state 42 

The result of SMOTE on the training set is depicted in Figure 4. Now, the training set 

for the multi-omics data is balanced with the equal number of samples on either class label. 

However, the testing set is still severely imbalanced. Figure 5 compares the class distribution 

between the training and testing set. 

 

Figure 4. The class distribution for the multi-omics train set before and after SMOTE. 

 

 

Figure 5. The comparison of class distribution for the training and testing set of the multi-omics data. 

2.6. Deep Learning Models 

Deep learning, which involves using artificial neural networks structured in layers to 

enable learning, has found application in cancer research [15-17] and other medical fields such 

as dental research and molecular biology [18–24]. The study includes two deep learning models: 

SDAE and VAE, to validate and assess the feature subsets selected by SVM-RFE in 2.4. At 
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the same time, due to hardware constraints, whereby the memory for the GPU used is 

insufficient for large neural networks, the study only incorporates FS 5000, 4000, 3000, 2000, 

and 1000 in classification. The setup for the experiment using the two models is specified in 

their respective subchapters. 

2.6.1. SDAE 

The SDAE model building starts with unsupervised learning. The main function for 

unsupervised learning is to train the SDAE model to learn the important features from each 

feature subset by encoding them into a smaller dimension (latent layer). The model loss 

during the unsupervised learning phase is recorded to assess the capability of the model to 

reconstruct the given inputs. Figure 6(a) shows the neural network of the SDAE model during 

unsupervised learning.  

 

 

Figure 6a. The neural network structure of the SDAE model for unsupervised training. 
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Figure 6b. The neural network structure of the SDAE model for supervised training. 

The hyperparameters used for the SDAE model during unsupervised training is 

tabulated in Table 8. There are 8 layers in the neural network, including the gaussian noise 

layer. Each layer in the encoder part of the model reduces the dimension of the input by 30%. 

The original input is encoded into 10% of its original dimension at the latent layer. For the 

decoder part, each layer increases the dimension by 30%. The dimension is restored to 100% 

at the output layer, in which the original input is attempted to be reconstructed. The epoch 

and batch size are set to 50 and 16, respectively, which is observed to allow the model to 

minimize the model loss to a converging point [25]. With reference to [26], the activation 

functions used the hidden layers, and the output layer is set to "ReLU" and "sigmoid" 

respectively. "adam" optimizer is used as it is the most recommended optimizer and is being 

adapted as the benchmark for deep learning models [27]. Binary cross entropy is used as the 

loss function as the objective of the SDAE model is classification [28]. The gaussian noise 

layer introduced at the input layer uses 10% of the dropout rate to aid the model learning [29]. 

The unsupervised learning SDAE model is then fine-tuned into a supervised learning 

model. This is done by replacing the decoder part of the model with a new layer that contains 

only 1 node with a sigmoid activation function, as shown in Figure 6(b). This layer acts as 

the new output layer. It allows the SDAE model to output values between 0 and 1 to represent 

the binary classes (Solid Tissue Normal & Primary Tumour), which turns the model into a 

supervised learning model capable of performing classification. The hyperparameters used 

during the unsupervised training phase are kept unchanged except for the layers. 
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Table 8. Hyperparameters used for SDAE during unsupervised and supervised training. 

Hyperparameters Unsupervised Learning Supervised Learning 

Layers 

5000, 5000 (noisy), 3500, 2000, 500, 

2000, 3500, 5000 

100%, 100% (noisy), 70%, 40%, 10%, 

40%, 70%, 100% 

5000, 5000 (noisy), 3500, 2000, 500, 1 

100%, 100% (noisy), 70%, 40%, 10%, 1 

Epoch 50 50 

Batch size 16 16 

Optimizer Adam Adam 

Activation 

functions 

ReLU – Hidden layers 

Sigmoid – Last layer (output layer) 

ReLU – Hidden layers 

Sigmoid – Last layer (output layer) 

Loss function binary cross entropy binary cross entropy 

Gaussian Noise 

Dropout Rate 
10% 10% 

2.6.2. VAE 

The VAE model building follows a similar fashion. It also starts with unsupervised 

learning to learn the features from each feature subset and encode them into a smaller 

dimension. A sampler is incorporated to generate new data points according to the mean and 

variance learned from the previous layers. The model then reconstructs the original input 

according to the sampled data [30]. Similarly, the VAE model is assessed based on the model 

loss. Figure 7a shows the neural network of the VAE model during unsupervised learning.  
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Figure 7a. The neural network structure of the VAE model for unsupervised training. 

 

 

Figure 7b. The neural network structure of the VAE model for supervised training. 
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Table 9 shows the hyperparameters used for the unsupervised training of the VAE 

model. The hyperparameters used are very similar to those used in the unsupervised learning 

of the SDAE model. However, the difference between the two models lies in the activation 

and loss functions. With reference to [29] in their work, the activation function for the sampler 

is set to "linear". Two different loss functions are used for the VAE model. The generative 

loss measures the overall reconstruction loss of the model, while the Kullback-Leibler (KL) 

loss measures the difference between the two probability distributions. The total loss of the 

VAE model is the combination of both loss functions [29]. 

Table 9. Hyperparameters used for VAE during unsupervised training. 

Hyperparameters Unsupervised Learning 

Layers 5000, 3500, 2000, 500, 2000, 3500, 5000 

100%, 70%, 40%, 10%, 40%, 70%, 100% 

Epoch 50 

Batch size 16 

Optimizer Adam 

Activation functions ReLU (Rectified Linear Unit) – Hidden layers 

Linear – Bottleneck layer (latent layer) 

Sigmoid – Last layer (output layer) 

Loss function Generative loss 

Kullback-Leibler (KL) loss 

 

Classification cannot be done directly by the VAE model itself by using a similar 

fine-tuning method in the supervised learning of the SDAE model. This is because the 

accuracy produced fluctuates around 50%, which is not in line with the baseline accuracy of 

the data. An external classifier is used to aid the VAE model in classification. This is done 

by extracting the data points sampled by the sampler in the latent layer and feeding them to 

the external classifier. In this study, SVM is the chosen external classifier. To keep it simple, 

the hyperparameters of the SVM model are kept as default as shown in Table 10. 

Table 10. Hyperparameters used for SVM as external classifier. 

Hyperparameters Description 

C 1.0 

Kernel linear 
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3. Results 

The output of the SVM-RFE algorithm is shown here. Besides that, the SDAE and 

VAE models are built with the selected feature subsets by the SVM-RFE, and the 

classification results are shown.  

3.1. SVM-RFE 

With the grid search implemented to determine the best set of hyperparameters for 

the SVM-RFE, it has been determined that the most optimal set of hyperparameter are 𝐶 =

 0.1, linear kernel and 𝑠𝑡𝑒𝑝 =  1 as shown in Table 11. The total computation time for the 

SVM-RFE to finish selecting 20 feature subsets is recorded at 3 hours and 9 minutes. 

Table 11. The selected set of hyperparameters for the feature selection using SVM-RFE for each 

feature subset. 

Feature Subset Computation Time 

C 0.1 

kernel linear 

step 1 

The initial classification result on the 20 feature subsets of multi-omics data is shown 

in Figure 8. It is observed that from FS 20000 to 14000, the mean accuracy is recorded at 

0.996. While the mean accuracy for FS 13000 to 1000 is recorded at 1.000. 

 

Figure 8. Boxplot for the CV result (accuracy) for each feature subset. 

The omics composition for each feature subset is depicted in Figure 9. The general 

trend observed is that the composition of gene expression omics goes down (75.08% to 

70.50%) as the size of the feature subset reduces, while the composition of DNA methylation 

expression rises (22.77% to 27.94%). This trend is observed until FS 5000, in which the trend 

is observed to go the opposite way, whereby the composition of gene expression goes up 

while the composition of DNA methylation goes down. The initial composition of miRNA 
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expression at 2.15% fluctuates as the size of the feature subset goes down until it settles at 

1.8%. 

 

Figure 9. Omics composition after SVM-RFE represented in bar chart. 

3.2. SDAE 

The model loss of the developed SDAE models using FS 1000 to 5000 during the 

unsupervised learning phase is recorded in Figure 10. Generally, the model loss for each 

SDAE model is low at below 0.5. It is noted that only the model loss for the validation in FS 

5000 resembles closer to the training set compared to the SDAE models built with other 

feature subsets. 

 

Figure 10. Model loss for the unsupervised learning for the SDAE model. 
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The classification results of the fine-tuning supervised learning SDAE models are 

recorded. Figure 11 shows the accuracy of the SDAE models with respect to epoch, while 

Figure 12 shows the confusion matrix obtained from the classification result of the last epoch. 

It is observed that FS 1000 and 4000 can correctly classify all the instances, while FS 2000, 

3000, and 5000 cannot classify the negative class label correctly, resulting in one false 

positive. The confusion matrix tabulates the accuracy, AUC score, precision, recall, and F1 

score in Table 12. 

 

Figure 11. The classification result for the fine-tuned supervised learning SDAE model. The 

accuracy of supervised learning for the SDAE model. 

 

Figure 12. The confusion matrix from the classification using the fine-tuned SDAE model. 
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Table 12. Metrics obtained from the classification result of the SDAE model. 

Feature 

Subset 
Accuracy AUC score Precision Recall F1 score 

5000 0.9904 0.5000 0.9904 1.0000 0.9951 

4000 1.0000 1.0000 1.0000 1.0000 1.0000 

3000 0.9904 0.5000 0.9904 1.0000 0.9951 

2000 0.9904 0.5000 0.9904 1.0000 0.9951 

1000 1.0000 1.0000 1.0000 1.0000 1.0000 

3.3. VAE 

The unsupervised learning VAE models are developed using FS 1000 to 5000. The 

total model loss of the model is obtained using the combination of the generative loss and the 

(Kullback-Leibler) KL loss, as shown in Figure 13. Generally, the total model loss for the 

VAE models decreases as the size of the feature subset used to develop the VAE models 

decreases. It is observed that both the total model loss for the training and validation sets can 

converge, but fluctuation is also observed for the validation sets.  

 

Figure 13. The overall loss of the VAE model during the unsupervised learning phase. 

The classification of the VAE model involves using an external classifier, an SVM 

model. The study first built a supervised learning VAE model using the same method applied 

for fine-tuning the SDAE model. However, it is observed that the accuracy produced by the 

fine-tuned VAE models is around 50%, which is far below the baseline accuracy for this 

testing set at 99.04% (refer to Table 13). This leads to the use of an external classifier for the 

classification of the VAE model. 
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To achieve this, the sampled data by the sampler in the latent space for each VAE 

model are extracted and fed to the SVM classification model. The hyperparameters used for 

the SVM model are kept as default at C = 1 with linear kernel. The classification of the 

sampled data by the VAE model using the SVM classifier is shown as a confusion matrix in 

Figure 14. 

 

Figure 14. Confusion matrices were produced using SVM's classification results as the external 

classifier on the encoded inputs in the VAE model. 

The accuracy, AUC score, precision, recall, and F1 score are calculated from the 

confusion matrix. The results are tabulated in Table 13. In Table 13, the metrics from the 

fine-tuned VAE model and the SVM model are displayed side-by-side to demonstrate the 

difference in performance between the two classification methods. 

Table 13. Comparison between the metrics obtained from the fine-tuned supervised learning VAE 

model's classification result and the SVM classification. 

Feature 

Subset 

Accuracy AUC (ROC) Precision Recall F1 score 

FT SVM FT SVM FT SVM FT SVM FT SVM 

5000 0.500 1.000 0.252 1.000 0.981 1.000 0.505 1.000 0.667 1.000 

4000 0.481 1.000 0.738 1.000 1.000 1.000 0.476 1.000 0.645 1.000 

3000 0.462 1.000 0.728 1.000 1.000 1.000 0.456 1.000 0.627 1.000 

2000 0.529 1.000 0.267 1.000 0.982 1.000 0.534 1.000 0.692 1.000 

1000 0.471 1.000 0.238 1.000 0.980 1.000 0.476 1.000 0.605 1.000 
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4. Discussion 

According to the boxplot in Figure 8, it could be understood that the SVM-RFE has 

removed many irrelevant features as the size of the feature subsets decreases. Therefore, the 

smaller feature subsets contain a higher density of relevant features, which allows the SVM 

classifier to obtain 100% accuracy. 

As for the omics composition after feature selection, the decline of the composition 

of gene expression and the rise of the composition of DNA methylation expression from FS 

20000 to 5000 could indicate that, as the feature subset becomes smaller, the SVM-RFE 

algorithms has removed a lot of irrelevant features from gene expression omics while keeping 

the more relevant features from DNA methylation expression omics. As the size of the feature 

subsets continues to decline, the opposite is observed, whereby the gene expression features 

become more relevant than that of the DNA methylation expression, causing the SVM-RFE 

to remove more features from DNA methylation expression, which results in the decline in 

composition. 

The baseline accuracy for the testing set used is 0.9904 or 99.04%. The testing set 

with 104 instances only has 1 example with the negative class label (Solid Tissue Normal). 

Therefore, by simply predicting only the positive class (Primary Tumour), an accuracy of 

0.9904 can be achieved.  

From the classification results of the SDAE models built with FS 1000 to 5000, only 

FS 1000 and 4000 can achieve 100% accuracy with all correctly classified instances. On the 

other hand, FS 2000, 3000, and 5000 failed to predict the negative class label accurately, 

resulting in 1 false positive prediction. Despite that, these models still achieved an accuracy 

of 0.9904. In this case, accuracy might not be a useful metric as the concern is to predict the 

minority negative class correctly. The AUC score is a more useful metric since it scores 

according to the predicted outcome for both class labels. The AUC score for FS 1000 and 

4000 are recorded at 1.000 since all the instances are correctly classified. Meanwhile, FS 

2000, 3000, and 5000 achieved 0.5000 for their AUC score, indicating zero capability in 

separating the class labels. 

According to the classification result on the extracted sampled data from the VAE 

models for each feature subset using the SVM model as an external classifier, each feature 

subset can achieve 1.000 accuracies. With all correctly classified instances, the rest of the 

metrics are also measured at 1.000. 

When comparing the classification results of the SDAE and VAE models, it could be 

deduced that the VAE models are more capable of learning the valuable feature of each 

feature subset during the encoding process. FS 1000 and 4000 are the two feature subsets that 

allowed both the SDAE and VAE models to achieve a score of 1.000 for each metric. This 

could indicate that FS 1000 and 4000 are the two most optimal feature subsets selected by 

the SVM-RFE algorithm. 
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5. Conclusions 

The study has employed SVM-RFE for feature selection to extract the most relevant 

features from the multi-omics data with large dimensions. The output obtained from the 

SVM-RFE are the 20 most optimal feature subsets the algorithm selects. The 5 feature subsets 

with the smallest size are then used in cancer classification using the fine-tuned supervised 

learning SDAE and VAE deep learning models. The result suggests that FS 1000 and 4000 

are the two most optimal feature subsets selected by the SVM-RFE algorithm. The SDAE 

and VAE classifiers can correctly classify all the instances using the testing set.  

The suggestions for future work for this study include 1) the use of new and updated 

multi-omics data to cater to the severe data imbalance problem and 2) the use of better 

hardware, including a GPU with larger memory capacity, to allow the development of the 

neural network of larger feature subsets (e.g., FS 20000) in deep learning classification.  
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