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Abstract: Helicobacter pylori is a highly prevalent bacteria that can harm humans due to its 

major involvement in developing gastrointestinal diseases, particularly gastric cancer. 

Therefore, eradicating H. pylori is one of the most important strategies for preventing gastric 

cancer. Antibiotic treatment has always been the gold standard treatment for H. pylori 

infection. However, the decreasing efficacy of antibiotic therapy due to the rising antibiotic 

resistance and high incidence of dysbiosis-related adverse effects resulted in eradication 

failure. To enhance the effectiveness of antibiotic therapy, strategies that modulate the gut 

microbiome were proposed to play a positive role. Generally, the integration of probiotics or 

symbiotic into antibiotic therapy was shown to enhance the eradication rate and reduce the 

incidence of adverse effects. This review aims to discuss the role and effect of H. pylori in 

gastric carcinogenesis and gut microbiome modulation in eradicating H. pylori infection. 
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1. Introduction 

The gut microbiome is composed of trillions of microorganisms that live within the 

human gastrointestinal tract (GIT) [1]. The gut microbiome has been extensively researched 

for its association with human health and diseases. Research has established the gut 
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microbiome connection in human digestion, nutrition, immune functions, and physiology. 

Any dysbiosis of the gut microbiome has been linked to various diseases, such as irritable 

bowel syndrome (IBS) [2], obesity [3], type 2 diabetes [4, 5], autoimmune diseases [6-8], cancer 
[9], psoriasis [10, 11], obsessive-compulsive disorder [12], and autism spectrum disorder [13]. 

Hence, modulating the gut microbiome has been proven to manage disease outcomes [14-18].        

The GIT is very vulnerable to pathogens, such as Vibrio sp. [19-22], Salmonella sp. [23], 

Listeria monocytogenes [24, 25], Escherichia coli [26], Staphylococcus aureus [27], 

Campylobacter sp. [28], Helicobacter pylori [29-31], and many more. Upon invasion, these 

pathogens release their toxins and colonize the host gut, leading to a dysbiosis of the gut 

microbiome [32]. Of the mentioned pathogens above, Helicobacter pylori research has been 

reviewed extensively due to its impact on human health.        

Helicobacter pylori is a gram-negative, spiral-shaped, microaerophilic bacteria in the 

gastric mucosa. It is highly prevalent among the world population affecting over half of them 
[33]. Most people acquire this pathogen in early childhood and can remain asymptomatic 

throughout their life [34, 35]. H. pylori is among the well-known bacteria due to its role in 

developing gastrointestinal diseases such as gastritis, gastric ulcer, and gastric cancer [36]. The 

pathogen was shown to be the primary etiology for gastric cancer and was listed as a Type 1 

carcinogen in 1997 by the World Health Organization [37]. Due to its association with gastric 

cancer, H. pylori remains a high burden to healthcare systems worldwide. According to 

Global Cancer Statistics 2020, gastric cancer is the sixth most common cancer, with an 

estimated 1089,103 cases, and the fourth leading cause of death due to cancer, with 768,793 

deaths in 2020 [38]. Most gastric cancers are adenocarcinoma, which is then classified into 

two morphological types: intestinal type and diffuse-type gastric cancer. For intestinal-type 

cancer: tumour cells form adhesions, arranging in glandular or tubular formation, and a well-

defined sequence has been proposed to be the carcinogenesis model, progressing from 

healthy gastric mucosa, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and gastric 

cancer [39, 40]. As for diffuse-type cancer, tumour cells are more scattered and non-cohesive. 

Carcinogenesis is a direct consequence of chronic active inflammation without any similar 

defined sequence [39]. 

The human stomach has always been a sterile organ due to its low pH [41]. However, 

the significant advancement of the technology in microbiome investigation led to the 

discovery of a diversified microbial community consisting of multiple commensal 

microorganisms forming a distinct ecological niche where complex interplay is present 

among H. pylori and the commensal microorganism [42, 43]. A delicate balance is maintained 

among the microbial community in the stomach, in which any alterations in the balance may 

lead to dysbiosis and induction of gastric diseases, particularly gastric cancer [44]. Meanwhile, 

H. pylori suppress acid production and destroy the parietal cells, resulting in increased 

stomach pH and enabling the colonization of new microorganisms [40, 45, 46]. Hence, 

eradicating H. pylori is essential for preventing gastric cancer [47]. 
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For the past few decades, standard triple antibiotic therapy was the gold standard 

treatment to eradicate H. pylori. Recently, there has been a decreasing eradication rate by 

antimicrobial therapy due to the increasing prevalence of antibiotic resistance [48, 49]. Despite 

developing new antibiotic regimens, they are still associated with adverse effects, leading to 

poor patient compliance and eradication failure [50]. Antibiotic therapy causes perturbation of 

the gastric microbiome leading to dysbiosis-induced gastrointestinal side effects [51]. To 

reduce the incidence of adverse effects from antibiotic-induced dysbiosis, strategies and 

therapies that can modulate the gut microbiota are being extensively explored [52]. Hence, this 

review aims to discuss the role and effect of H. pylori in gastric carcinogenesis and potential 

gut microbiome modulation in eradicating H. pylori infection. 

2. Pathogenesis of H. pylori  

The fact that not every individual infected with H. pylori develops gastric cancer shows 

that the pathogenesis of the variable clinical outcomes of H. pylori infection is multifactorial, 

including the virulence factors of the bacteria strain, host gene polymorphism, and 

environmental influences. Gene polymorphism of pro-inflammatory cytokines such as IL-1B 

increased gastric cancer risk through different mechanisms, including inflammatory injury, 

gastric acid secretion inhibition, and angiogenesis promotion [53-55]. Besides IL-1B, genetic 

variation in another pro-inflammatory cytokine, TNF-α, increased expression is also associated 

with enhancing gastric cancer risk [56]. With inflammation playing a vital role in cancer 

progression, polymorphism in inflammatory cytokines, which regulates the intensity of 

immune response, may augment gastric cancer risk [57]. Environmental factors, including 

dietary habits, cigarette smoking, and alcohol consumption, also affect gastric cancer risk. The 

dietary habits consisting of high salt content, red meat, processed meat, and low fiber enhanced 

gastric cancer risk [58-60]. Interestingly, former and current smokers demonstrated higher rates 

of gastric cancer than never-smokers, and the risk intensifies with the number of cigarettes per 

day for current smokers [61]. As for alcohol consumption, heavy drinkers with more than four 

drinks per day have significantly increased odds of developing gastric cancers compared to 

abstainers [62]. 

Besides host genetic vulnerability and environmental influences, virulence factors 

associated with the bacteria's pathogenicity were involved in gastric carcinogenesis. The 

human stomach contains gastric fluid with a pH of around 2.0. This highly acidic environment 

remains a huge challenge for colonizing most invading pathogens, which enables the bacteria 

to survive in the highly acidic environment, colonize the gastric mucosa, and evade the immune 

cells. H. pylori possesses urease, one of the main virulence factors that neutralize acidity and 

enable it to survive and colonize in such a harsh environment [63]. The urease produced by H. 

pylori plays an alkalizing role as it hydrolyses urea in the stomach and produces ammonia plus 

carbon dioxide, which neutralizes the stomach's acidity and provides a favorable environment 

for the survival of H. pylori [63]. Aside from acid neutralization, urease was also involved in the 

carcinogenesis of gastric cancer. Recently, an in vitro study uncovered that ureases can trigger 

a specific pathway to initiate angiogenesis in the gastric epithelial cell. This can potentially lead 

to the carcinogenesis of gastric cancer [64]. Additionally, urease displayed pro-inflammatory 
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activity in the gastric endothelial cells, inducing alterations in the oxidative profile of the cells 

and resulting in differentiation which may contribute to gastric carcinogenesis [63]. 

Two main virulence factors affect the pathogenicity of the host cell, CagA and VacA 

virulence protein. CagA is the first bacterial oncoprotein shown to be associated with cancer in 

humans [65]. It is transported into the host gastric epithelial cells by a syringe-like structure 

called Type 4 secretion system [66-68]. In the host cells, there is phosphorylation of CagA by 

tyrosine kinase protein. Then, CagA binds to signaling proteins that perturb multiple 

intracellular signaling pathways leading to the host cells' malignant changes [69]. The expression 

of CagA leads to morphological changes in the cells, specifically elongation and increased 

motility, known as the “hummingbird” phenotype [70]. This oncoprotein also causes disruption 

of the intercellular junction and the polarity of the epithelial cells [71-73]. In addition, this 

molecule induces anti-apoptotic activity in the gastric epithelial cells leading to decreased 

turnover of cells. Also, it triggers instability in the genome which both are classic traits of 

cancer cells [74, 75]. Recently, Choi et al noted that CagA upregulates the CDX1 expression 

involved in regulation of intestinal function, which may lead to gastric carcinogenesis [76]. 

Another virulence factor VacA is a pore-forming cytotoxin that can induce vacuolation 

and promote apoptosis in gastric epithelial cells [77, 78]. VacA exerts its effects on cellular 

activity through the mitochondrial pathway, triggering the release of cytochrome c leading to 

autophagy and cell death [79, 80]. A study proposed that VacA induces cell apoptosis by 

activating the endoplasmic reticulum stress cascade [81]. Moreover, VacA modulates the host 

immune reaction by preventing the recruitment of immune cells, including T cells and B cells, 

to ensure the longevity of the infection [82, 83]. VacA also targets macrophages, the first line of 

defense, by interfering with the maturation of the phagosome and blocking the activation of 

cytokines induced by macrophages [84, 85]. Recent studies also showed the interplay between 

VacA and CagA, where the disruption of autophagy by VacA promotes CagA accumulation in 

gastric cells resulting in the persistence of H. pylori in the gastric mucosa [86]. 

3. H. pylori and gastric microbiome 

The dogma that the human stomach is a sterile organ has been shattered since the 

revelation of H. pylori. Since then, there has been a hypothesis that the human gut harbors a 

diversified bacterial community [87]. Bik et al. conducted a critical study that explored the 

composition of the gastric microbiome through a biopsy of the gastric mucosa and PCR of 

the samples. This study shows that the gastric microbiota of healthy individuals comprises 

five major phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and 

Fusobacteria, which were then supported by newer studies [88, 89]. Despite the variation of the 

microbiota composition among individuals, the human stomach contains a diversified 

microbiome [87, 90]. 

In the gastric microbiome consisting of a highly diversified bacterial community, H. 

pylori seemed to be the most dominant bacteria with the highest abundance in the gastric 

microbiome when present [42, 91]. Schulz et al. noticed that the abundance of H. pylori 
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comprises more than 50% among H. pylori-positive subjects, and the abundance of the other 

major species decreased [42]. A recent study in 2019 obtained a more significant result where 

the bacterial communities of the stomach among H. pylori-positive children were notably 

dominated by 95.43% of H. pylori in the genus [91]. As for H. pylori-negative individuals, 

studies have shown that Streptococcus was commonly the prominent genera with the highest 

abundance in the gastric microbiome [42, 91, 92]. 

With the dominance of H. pylori in the gastric microbiome, H. pylori were shown to 

alter the composition and species diversity. Studies showed that the gastric microbiome was 

significantly less diversified in H. pylori-positive patients than in H. pylori-negative patients. 

In a study by Anders et al., they identified 262 bacterial phylotypes compared to 33 in H. 

pylori-positive individuals. The result shows that for individuals with H. pylori infection, 

their gastric microbiota was significantly less diversified than H. pylori-negative individuals 
[93]. A recent study in Indonesia supported the findings that bacterial diversity decreased in 

the H. pylori-positive group [94]. Several other studies further emphasized that the alpha 

diversity of H. pylori-positive patients is significantly lower than healthy individuals [42, 89]. 

3.1. H. pylori and gastric microbiome in gastric carcinogenesis 

According to Correa’s model of gastric carcinogenesis, persistent colonization of H. 

pylori triggers an inflammatory process that then initiates the carcinogenesis cascade, starting 

from atrophic gastritis, intestinal metaplasia, dysplasia, and gastric cancer. Long-term 

colonization of H. pylori leads to atrophy of the parietal cells, whose main function is the 

secretion of acid, leading to increased pH of the gastric fluid and atrophic gastritis [40]. As 

most bacteria cannot live in highly acidic conditions, H. pylori-induced achlorhydria disrupts 

the acid barrier, colonizing new microbes, and leading to the gastric microbiome alterations. 

Meanwhile, the proliferation of new microbes may further promote inflammatory reactions, 

leading to cancer progression [40]. Multiple studies attempted to discover the role of non-H. 

pylori in the carcinogenesis of gastric cancer. One hypothesis proposed that some of these 

microbes can reduce nitrate into nitrite, forming N-nitroso compounds that are potentially 

carcinogenic [95]. Ferreira et al. analyzed the functional composition of the gastric 

microbiome in individuals with chronic gastritis and gastric cancer. They noticed that the 

gastric cancer microbiome has a higher nitrate reductase function, promoting the formation 

of carcinogenic compounds [45]. Jo et al. reported twice as much nitrosating bacteria in 

individuals with gastric cancer compared to the control groups [96].  

Similarly, there was an enrichment of bacteria involved in nitrate metabolisms, such 

as Escherichia coli, Lactobacillus, and Nitrospirae, in patients with gastric cancer [46, 97]. 

Another hypothesis stated that oral microbiota plays a role in gastric carcinogenesis. Coker 

et al. demonstrated that microbiome from the oral origin, including Slackia exigua, 

Peptostreptococcus stomatis, Streptococcus anginosus, Parvimonas micra and Dialister 

pneumosintes were significantly enriched and formed strong interactions in the gastric 

microbiome of gastric cancer [98]. In another study among gastric cancer patients from 

Malaysia and Singapore, there is an increased abundance of oral bacterial taxa such as 
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Leptotrichia, Fusobacterium, Haemophilus, Veillonella, and Campylobacter [99]. In a few 

other studies, there is reportedly a higher abundance of oral bacteria such as Lactobacillus, 

Streptococcus, and Neisseria in gastric cancer patients [100-102]. Sun et al. developed a scoring 

system to screen for patients with high suspicion of gastric cancer by detecting oral bacteria. 

The sensitivity was as high as 97.3%, with a 7.7% false-positive rate. However, this study 

consists of a small sample size of 50 subjects, and more extensive studies are required to 

validate the results [103].  

Some studies also examined the changes in gastric microbiota diversity along 

Correa’s carcinogenesis cascade. Most studies reported significant differences in gastric 

microbiome diversity in gastric cancer compared to precancerous lesions, demonstrating 

gastric dysbiosis's role in gastric carcinogenesis [45, 98]. Jimenez et al. conducted a study to 

explore gastric microbiota changes along the carcinogenesis cascade and reported a 

decreased diversity in gastric cancer [104]. Wang et al. supported these findings, showing that 

the gastric microbiome diversity decreases along the gastric carcinogenesis cascade [98]. 

However, studies have proposed contradictory results stating that gastric microbiome 

diversity increase in gastric cancer. Rodriguez et al. and Eun et al. reported that gastric 

microbiome diversity increases in subjects with gastric cancer [99, 100]. Wang et al. further 

supported the findings in a study involving 315 patients showing that gastric microbiota 

diversity increases in gastric cancer [46]. The discrepancy in the results from different studies 

could be due to factors influencing the gastric microbiome, such as the variation of gender, 

ethnic group, and dietary habits among the subjects [87, 98]. 

4. Antibiotic therapy in H. pylori infections  

Various antibiotic therapies have been evaluated to eradicate H. pylori. However, few 

were highly effective, with consistently high eradication rates and low incidence of adverse 

effects [105]. The reasons for eradication failure are mostly due to the increasing antibiotic 

resistance and non-compliance to treatment. According to clinical guidelines, bismuth 

quadruple therapy replaced standard triple therapy as the first line in areas with known high 

macrolide resistance. Besides that, multiple alternative drug regimens are recommended as 

the first-line treatment, including levofloxacin, sequential therapy, concomitant therapy and 

hybrid therapy, depending on antibiotic resistance and penicillin allergies [49]. Recently, 

Vonoprazan emerged as one of the most promising drugs for H. pylori infection [106]. 

Vonoprazan is a highly potent acid-inhibitory drug with rapid onset and longer duration of 

action than conventional proton pump inhibitors [107, 108].  

Studies have reported that antibiotic therapy reduces the diversity and composition of 

the gut microbiome [109, 110]. In a multicentre randomized trial, Liou et al. explored the effect 

of standard triple therapy, bismuth quadruple therapy, and concomitant therapy on the gut 

microbiome. After antibiotic treatment, faecal microbiota analysis was done at 2, 8, and 10 

weeks. The results demonstrated significant perturbation of gut microbiota with reduced 

microbiome diversity at week 2 for all three antibiotic regimens. After one year, the bacterial 

diversity was fully restored in standard triple therapy but not in bismuth quadruple and 
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concomitant therapy. There was an increased abundance of Proteobacteria and decreased 

Firmicutes and Bacteroidetes in concomitant therapy and quadruple therapy groups [109]. In 

line with the previous study, Chen et al. noticed a decreased microbial diversity, increased 

Proteobacteria, and decreased Firmicutes and Bacteroidetes, which persisted for more than 

six weeks after treatment, suggesting the antibiotic-induced dysbiosis may persist without 

complete restoration after a long period [110]. The abundance of butyrate-producing bacteria, 

Lachnospiraceae, decreased after antibiotic treatment, increasing the risk of Clostridium 

difficile infection [110, 111]. Few other studies supported the findings that gut microbiome 

diversity decreased after eradication therapy with increased Proteobacteria and decreased 

Firmicutes, Bacteroidetes and Actinobacteria after antibiotic therapy [112, 113]. Interestingly, 

there was a reduced abundance of Bifidobacterium in a few studies [114-116]. Bifidobacterium 

prevents colonization of commensal pathogens and assists in the metabolism of 

carbohydrates, suggesting that decreased Bifidobacterium may be linked to antibiotic-

induced adverse effects [115, 117]. 

5. Modulation of the gut microbiome 

Probiotics are live microorganisms that may provide health benefits if given in 

optimum quantity [118]. Today, probiotics have gained people's interest as an effective 

therapeutic option for managing digestive and immune health [119]. Probiotics have proven 

effective in treating various diseases, from gastrointestinal issues to recent COVID-19 

infections [120-122]. Lactobacillus, Bifidobacterium, and other lactic acid-producing bacteria 

(LAB) are common probiotics used in dairy products and yogurt. As human microbiome 

research expands, a range of potential probiotics with good benefits to the host has been 

discovered. Among those new potential probiotic candidates is Streptomyces sp. Recent 

studies have revealed that Streptomyces sp. has strong antibacterial, anti-Vibrio activity and 

probiotic properties for aquaculture usage [123-127]. Further studies should be conducted to 

strengthen these findings before they can be administrated to humans.          

Based on the properties of different probiotics, several proposed mechanisms of 

action against H. pylori include immunological and non-immunological mechanisms. The 

first line of defense against foreign pathogens is its high acidity and intact stomach mucosa. 

Probiotics can synthesize antimicrobial substances, including lactic acids, short-chain fatty 

acids, and bacteriocins. Certain probiotic strains, such as Bifidobacterium longum and 

Lactobacillus casei were found to inhibit the activity urease in H. pylori, hindering its ability 

to colonize the stomach [128, 129]. In a study by Kim et al., mice model gastric pH decreases 

significantly after administering lactic acid bacteria, eliminating H. pylori [129]. Bacteriocins 

are proteinaceous toxins that possess anti-H. pylori activity and its antimicrobial activities 

vary with different probiotic strains. Bacteriocin and lactic acid secreted by Lactobacillus 

bulgaricus and Lactobacillus pentosus strains were shown to inhibit antibiotic sensitivity and 

antibiotic resistance H. pylori strains [130, 131]. Other than Lactobacilli, Lim et al. reported that 

the bacteriocins produced by Enterococcus faecalis BK61 exhibit anti-H. pylori activity [132]. 

A recent in vitro study by Sacacino et al. reported several probiotic strains, including 

Lactobacillus casei, Lactobacillus paracasei, Lactobacillus acidophilus, Bifidobacterium 
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lactis and Streptococcus thermophilus strains possess both bactericidal and bacteriostatic 

against H. pylori [133]. Additionally, reuterin, a nonpeptide antimicrobial substance secreted 

by Lactobacillus reuteri was seen to exert effect through downregulation of H. pylori 

virulence factors, VacA and flaA [134]. 

Probiotics can adhere to binding sites of gastric epithelial cells and provide 

competition for the adhesion of H. pylori. Mukai et al. reported that L. reuteri strains have a 

specific affinity for two glycolipid binding sites on epithelial cells thus competing and 

occupying the adhesion site H. pylori, preventing the pathogen from colonizing the gastric 

mucosa [135]. A newer study by Holz et al. added that L.reuteri decreases the mobility of H. 

pylori by entangling and forming aggregate with H. pylori which will eventually be flushed 

out from the gut [136]. Additionally, Lactobacillus gasseri and Lactobacillus brevis strain was 

noted to reduce the adherence of H. pylori to the host cell by inhibiting the expression of 

sabA gene [137]. A probiotic yeast named Saccharomyces boulardii was noted to inhibit 

adherence of H. pylori to the host cell by removing α‐2,3‐linked sialic acid, the ligand for H. 

pylori adhesin with its neuraminidase activity [138]. 

Probiotics reduce the inflammation in the gastric cells through modulation of the 

immune reaction and inhibit the production of pro-inflammatory cytokines. Studies have 

shown that L. bulgaricus, L. acidophilus and L. rhamnosus inhibit the production of 

inflammatory cytokine, particularly IL-8, in the cells infected with H. pylori [139, 140]. Besides, 

Yu et al. demonstrated that a probiotic cocktail consisting of E.faecalis, L.acidophilus and 

B.longum plays a significant role in the downregulation of inflammatory chemokines and 

cytokines, including TNF-α, IL-10, IL-1β, IL-6, MIP-2 and G-CSF which eventually leading 

to improvement of H. pylori-induced gastritis [141]. 

Lactobacillus strain probiotics have been widely studied in terms of their role in 

enhancing the eradication rate and improving gastrointestinal symptoms. A randomized 

controlled trial by Poonyam et al. evaluated the effect of probiotic supplementation on 

antibiotic therapy by prescribing L.reuteri during bismuth-based triple therapy to eradicate 

H. pylori. Results showed no significant difference in eradication rates but a significantly 

lower incidence of side effects, including nausea, diarrhea, black stools, and abdominal 

discomfort [142]. Francavilla et al. assigned 100 H. pylori-positive individuals into two groups: 

one group received standard triple therapy plus two L.reuteri strain, and another group 

received the same antibiotic treatment and placebo. In contrast to the previous study, the 

probiotic group's eradication rate was significantly increased compared to the placebo group 

(75% vs 65.9%). Similarly, lower side effects were reported in the probiotic group compared 

to the placebo (40.9% vs 62.8%) [143]. The probiotic yogurt containing L. gasseri was seen to 

reverse the dysbiosis and restore the balance in the gastric microbiome [144]. 

Besides Lactobacillus, Bifidobacterium was also commonly used as supplementation 

for anti-H. pylori antibiotic therapy. In a study by Jiang et al., 232 patients were randomly 

prescribed bismuth quadruple therapy plus live combined Bifidobacterium probiotic or 

bismuth quadruple therapy without probiotic. Significantly higher eradication rates and lower 
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incidences of side effects were noted in the probiotic group [145]. Cekin et al. compared the 

eradication rate between one group receiving sequential eradication therapy with probiotics 

containing Bifidobacterium animalis subsp. lactis B94 and one group without probiotics. The 

eradication rate was significantly higher with probiotics than with the controls (86.8% vs 

70.8%). The probiotic group also experienced a lower incidence of diarrhea (1.88% vs 

12.26%), leading to better compliance with treatment [146]. 

Several studies have explored the role of yeast probiotics such as S. boulardii. Seddik 

et al. reported that adding S.boulardii to anti-H. pylori sequential therapy resulted in an 

increased eradication rate compared to sole sequential therapy (86.0% vs 76.7%). The 

probiotic group also reported a significantly lower incidence of antibiotic-induced diarrhea 

(2.0% vs 46.4%) and overall side effects (17.0% vs 55.7%). This led to a significantly higher 

compliance rate in the probiotic group (95.0% vs 91.2%) [147]. In 2019, He et al. administered 

S.boulardii during bismuth-based quadruple therapy. No significant difference was noted in 

the eradication rate. Still, the incidence of nausea, diarrhea, and side effects was significantly 

lower compared to the control group. This study also noted that supplementation of probiotics 

simultaneously with quadruple therapy recorded a lower incidence of adverse effects than 

administration on the 14th day after commencing quadruple treatment, suggesting the best 

timing for probiotic supplementation [148]. A recent study by Cardenas et al. revealed that S. 

boulardii supplementation increased bacterial diversity in the gastric microbiome [149]. 

Additionally, Clostridium was also considered a potential candidate for probiotic 

supplementation. Mukai et al. demonstrated that anti-H. pylori therapy regimen consisting of 

probiotic C. butyricum and standard triple therapy recorded a higher eradication rate of 87.1% 

compared to 70.1% in standard triple therapy without probiotics [150]. Chen et al. also noted 

that C.butyricum supplementation improves gastrointestinal symptoms by restoring gut 

microbiota composition [139]. Furthermore, there are also studies exploring the role of other 

probiotics. Tang et al. prescribed bismuth quadruple therapy to 162 patients, with one group 

receiving probiotics consisting of Enterococcus faecium plus Bacillus subtilis and another 

group receiving a placebo. The result was consistent with the previous study, as the probiotic 

group's eradication rates were higher at 87.01% compared to 82.43% in the placebo group 
[151]. Furthermore, beneficial bacteria were enriched with probiotic supplementation, 

including Oscillospira and Lactobacillales, known for producing short fatty acid chain 

butyrate, regulating immune reactions, and alleviating gastrointestinal symptoms [152, 153]. 

Inflammation-linked harmful bacteria, such as Collinsella, Dialistera and Sutterella were 

also reduced in the probiotic group [154]. Jung et al. compared the eradication rate and side 

effects of one group receiving concomitant therapy and another group receiving standard 

triple therapy plus probiotics containing either freeze-dried L. casei rhamnosus or B.subtilis 

combined with E. faecium. In contrast to previous studies, there were no significant 

differences in the eradication rates between groups, but the probiotic group reported a lower 

incidence of adverse effects [155]. 

Aside from probiotics, prebiotics and synbiotics also play a role in gut modulation. 

Prebiotics are compounds that are non-digestible but can be metabolized by gut microbiota 
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to allow benefits for the host [156]. In contrast to probiotics, limited studies were done to 

investigate the role of prebiotics on anti-H. pylori therapy. Instead, more studies researched 

synbiotics, a combination of probiotics and prebiotics. A study by Sirvan et al. explored the 

impact of Bifidobacterium lactis based synbiotics on standard triple therapy. Results showed 

a higher eradication rate in the triple therapy plus synbiotics group compared to triple therapy 

alone (88% vs. 72%). In terms of the adverse effects, the synbiotics group experienced a 

significantly lower incidence of adverse effects, including nausea, vomiting, diarrhea, and 

abdominal pain [157]. Contrary to this study, two other trials used the same B.lactis strain and 

inulin during standard triple therapy. There was no significant difference in the eradication 

rate compared to the control group. Ustundag et al. reported no significant difference in the 

side effects in both groups. In contrast, a study by Islek et al. reported significantly lesser 

side effects in the symbiotic group than in the triple therapy group (63% vs. 17%) [158, 159]. 

Fecal microbiota transplant (FMT), which is the transplantation of fecal material from 

a healthy donor into the patient’s intestines, has been proven to restore the gut microbiota 

and treat gastrointestinal disorders, including irritable bowel syndrome, inflammatory bowel 

disease, and Clostridium difficile infection [160]. Additionally, FMT was shown to be more 

cost-effective than antimicrobial therapy [33]. Therefore, researchers hypothesized that fecal 

microbiota transplantation could play a role in eradicating H. pylori through the restoration 

of gut microbiota. To verify this hypothesis, Ye et al. conducted a study in 2020 where they 

administered washed microbiota transplant (WMT) to 32 patients. WMT was performed in 

this study due to its lesser adverse effects and higher efficacy as compared to conventional 

FMT [161, 162]. 32 patients diagnosed with H. pylori infection for the past year and not on 

eradication therapy were administered WMT once a day for three consecutive days. The 

result showed an eradication rate of 40.6% four weeks post-WMT [162]. This positive result 

warrants future randomized controlled trials with a larger sample size to determine the 

optimal dosage and frequency of WMT and to confirm the safety and efficacy of WMT. 

6. Conclusion 

Antibiotic therapy has been the gold standard for the eradication of H. pylori. 

Nevertheless, antibiotic therapies have limitations, including increasing antibiotic resistance 

and antibiotic-induced dysbiosis, leading to a high incidence of adverse effects and poor 

patient compliance. The few factors combined lead to decreased efficacy of antibiotic therapy 

and reduced eradication of H. pylori, contributing to a higher prevalence of gastrointestinal 

diseases, particularly gastric cancer. This review shows that integrating probiotics into 

antibiotic therapy enhances antibiotics' efficacy and restores the gastric microbiome's 

homeostasis. Probiotics extensively studied and shown to be effective include Lactobacillus, 

Bifidobacterium, Saccharomyces, and Clostridium strains. However, there is insufficient 

evidence to determine the best probiotic strain for eradicating H. pylori. Therefore, large 

sample trials should be conducted to determine the selection, optimum dosage, and duration 

of antibiotics and probiotics to improve the efficacy of antibiotic therapy. Besides probiotics, 

there is also an increased eradication rate and reduced adverse effects with symbiotic 

supplementation. However, relatively fewer trials were done on symbiotic, prompting more 
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studies to investigate the efficacy of symbiotic supplementation and the possible combination 

of probiotics and prebiotics for the best effect. Lastly, fecal microbiota transplant is 

potentially a highly cost-effective therapy for H. pylori. Further studies should be conducted 

to evaluate its safety, effectiveness, and synergistic effect when combined with the current 

eradication regimen. 
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