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Abstract: Parkinson’s disease (PD) is the fastest-growing neurodegenerative disease in the
world. Despite extensive research, its aetiology and pathogenesis remain poorly understood,
often leading to delayed or missed diagnoses, especially in early-onset cases. One of the
important hallmarks of PD is the progressive loss of dopaminergic neurons in the substantia
nigra, which underlies the manifestation of motor symptoms. Current therapeutic
interventions, which primarily offer symptomatic relief, do not alter the deteriorating course
of the disease. These limitations have led to a greater emphasis on regenerating dopaminergic
neurons as a potential approach for PD management. Mammals, however, exhibit limited
reparative capacity in renewing cellular components of the central nervous system (CNS),
making mammalian-based models unsuited for the understanding of neuroregeneration. As
such, the zebrafish (Danio rerio) has emerged as a powerful model for neuroregeneration
studies given its robust neurogenic potential, high proliferative capacity, and significant
genetic and structural homology to the human brain. This review aimed at highlighting
current findings on zebrafish neuroregeneration, with particular emphasis on 1) cellular
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responses and neuroinflammation following the loss of neurons and 2) brain repair through
the regeneration of new neurons through sequential stages of progenitor cell proliferation,
migration, and differentiation at the injured brain regions. The latest findings on the
conserved neuroregenerative mechanisms in zebrafish further imply translational potential
into novel therapeutic strategies against PD, such as drug discovery and activation of
endogenous repair pathways. By contrasting the mammalian limitations, this review
underscores advances in zebrafish neuroregeneration which could provide new therapeutic
avenues for PD.

Keywords: Parkinson’s disease, zebrafish, neuroregeneration, dopaminergic neurons,
immune cells

1. Introduction

Parkinson’s disease (PD) is the most common movement disorder and the second
leading neurodegenerative disease in the world, affecting an estimated 8.4 million people
globally in 2019 > 2. This number is projected to reach 25.2 million by 2050 due to the
ageing of the global population 1. In many developing nations, a demographic shift is
underway, with the proportion of older adults expected to rise from 7% to 14% between 2020
and 2043. This demographic trend raises significant concerns for healthcare systems, as the
ageing population is particularly susceptible to age-related diseases “l. As such, PD presents
a growing healthcare burden, with a mortality rate nearly three times that of the general
population 2571 While the aetiology and pathogenesis of PD remain poorly understood, the
progressive loss of dopaminergic neurons underpins the motor symptoms of PD & The
loss of dopaminergic neurons is associated with ageing (a major risk factor for PD [10 1),
whilst genetic mutations [e.g., Synuclein Alpha (SNCA), Leucine-Rich Repeat Kinase 2
(LRRK2)] 1224 environmental exposures (e.g., pesticides, diet) [*> 61 and emerging

evidence of gut microbiota alterations could potentially contribute to disease susceptibility
[17, 18]

Current PD treatments, such as levodopa, dopamine agonists, monoamine oxidase B
(MAO-B) inhibitors, and deep brain stimulation (DBS), offer only symptomatic relief but do
not alter disease progression [°l. Levodopa, the gold standard, has a short half-life and gives
rise to side effects, whereas DBS is associated with surgical risks [2%2%. An emerging strategy
against PD is cell replacement therapy, which aims at preventing dopaminergic cell loss and
restoring dopamine production by implanting functional dopamine neurons into the striatum
(241 However, this approach not only yielded inconsistent results due to challenges in
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producing mature neurons from grafts, but is also associated with safety concerns, immune
responses destroying grafted tissue, complex graft preparation, and high treatment costs [*
251 Alternatively, there is also an attempt at drug discovery using botanical extracts such as
Nicandra physaloides, Pinus succinifera, and Piper longum. These extracts regulate
autophagic processes, including initiation, elongation, maturation, and selective degradation,
demonstrating neuroprotective effects in neurological models [?°1. Baicalein, a flavonoid from
Scutellaria baicalensis, also exhibits antioxidant, anti-carcinogenic, and neuroprotective
properties, with potential benefits in PD patients 271, However, the clinical efficacy of these
extracts remains under investigation and requires further clinical trials.

Given the lack of disease-modifying treatments against PD, current research efforts
are directed towards neuroregeneration as an alternative therapeutic strategy. This approach
aims at restoring neuronal function through cellular mechanisms, beginning with injury
response, followed by proliferation, migration, and differentiation of progenitor cells into
damaged brain regions. However, neuroregeneration in adult mammals remains rare and
inefficient. The investigation of mechanisms underlying this process in mammalian models
is particularly challenging given neurogenesis is largely restricted to specialised niches which
include the hippocampus and subventricular zone 8. Furthermore, neuronal loss in
mammalian models persists, and strategies such as foetal dopaminergic cell transplantation
or glia-to-neuron reprogramming remain unsuccessful due to immune rejection, poor survival
and integration of transplanted cells, as well as incomplete functional recover 2% 2%, Owing
to its exceptional capacity to regenerate lost neurons, the zebrafish model has recently
emerged as a valuable tool for elucidation of the cellular and molecular mechanisms
underlying neural repair B% 321, The zebrafish model is highly regarded for its various
advantages, including rapid development, ease of maintenance and handling, cost- and space-
efficiency, high-throughput screening capabilities, high genetic homology to humans, and
conserved brain architecture and physiological functions B2,

Although zebrafish are widely used to study neuroregeneration, most studies focused
on developmental neurogenesis or neuroregeneration following spinal cord injuries or
developmental neurogenesis 3428 As such, the specific cellular mechanisms driving the
zebrafish ability to regenerate lost neurons following brain lesions remain to be fully
elucidated. Given the distinct responses of mammalian and zebrafish neural stem cells to
injury, along with the complexity of neuroregeneration, specific investigations that uncover
the pathways that drive the intrinsic regenerative capacity of the injury-induced zebrafish
model are essential. That said, there remain considerable knowledge gaps regarding cellular
changes following brain lesions. This review aimed at addressing these gaps by highlighting
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the cellular mechanisms of injury response and neurogenic repair in zebrafish models, in
contrast to mammals.

This review first outlined the pathological cascade of PD, focusing on oxidative
stress, mitochondrial dysfunction, and neuroinflammation. It then compared the mammalian
glial and immune responses (which featured the microglia- and astrocyte-mediated glial scar
formation that restricts neuronal regeneration) with the regenerative responses observed in
zebrafish. This comparative framework underpinned the analysis of zebrafish
neuroregeneration, emphasising the role of neurogenic niches in driving key regenerative
processes, which include progenitor proliferation, migration (involving neuroblasts), and
differentiation.

2. Cellular Responses and Neuroinflammation Following Dopaminergic Neuron
Damage in PD

PD is marked by the loss of dopaminergic neurons in the substantia nigra pars
compacta (SNpc) %49, The dopaminergic neurons project to the striatum via the nigrostriatal
pathway, which is essential for motor control [, Although the exact mechanisms underlying
the pathogenesis of PD remain elusive, it is widely hypothesised that oxidative stress,
mitochondrial dysfunction, and neuroinflammation collectively contribute to irreversible
cellular damage [®1. Due to their high metabolic demand, dopaminergic neurons are
particularly susceptible to oxidative stress, which in turn exacerbates mitochondrial
dysfunction [*2. Mitochondrial dysfunction causes reduced mitochondrial complex | (MCI)
activity, elevated reactive oxygen species (ROS), adenosine triphosphate (ATP) depletion,
and the activation of caspase-3-mediated apoptosis [“#71. Mitochondrial dysfunction also
contributes to a-synuclein aggregation and iron accumulation, which further exacerbate
oxidative stress and neuronal damage [“&. Moreover, mitochondrial stress activates
inflammatory pathways, promoting the release of pro-inflammatory cytokines such as
Interleukin-1 (IL-1), IL-6, and Tumor Necrosis Factor alpha (TNF-a). Mitochondrial
deoxyribonucleic acid (DNA) leakage further drives neuroinflammation 1441,

Recent research highlighted the pivotal role of neuroinflammation in the
pathophysiology of PD and other neurodegenerative disorders % where it contributes to the
onset and progression of cognitive impairments, including deficits in learning and memory B,
Initially, immune cells such as microglia and astrocytes infiltrate the central nervous system
(CNS) and interact with cytokines, chemokines, and the complement system to facilitate
tissue repair and counteract a range of pathological stimuli, including cellular damage, o-
synuclein aggregation, environmental toxins, infections, genetic mutations, and
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mitochondrial dysfunction 2 %3, However, chronic activation of these immune responses
exacerbates neuroinflammation, compromising blood-brain barrier (BBB) integrity and
increasing the brain’s susceptibility to neurotoxic agents, ultimately accelerating disease
progression by amplifying neuronal damage and hastening the deterioration of neuronal
function 54,

2.1. Neuroimmune Responses in Mammalian PD Models: Roles of Glia, Glial Scarring, and
Adaptive Immunity

2.1.1. Microglia

Microglia, the primary resident immune cells in the CNS, appear to play a crucial role
in the pathophysiology of PD 5% In the event of neuronal injury, microglia undergo
proliferation, morphological changes, and activation into a reactive state (i.e., microgliosis)
that can be broadly classified as follows 6%

e M1 phenotype (pro-inflammatory/cytotoxic) which releases cytokines and ROS,
driving neuroinflammation and neuronal loss.
e M2 phenotype (anti-inflammatory/neuroprotective) which promotes debris

clearance, tissue repair, and regeneration.

In PD, microgliosis predominantly favours the M1 phenotype, thereby driving
excessive inflammation and neuronal damage . Activated microglia further modulate
astrocytic responses via mediators such as IL-1a, TNF-a, and Complement Component 1q
(C1q), establishing a critical signalling axis % 62, Basically, this crosstalk shifts astrocytes
toward the neurotoxic Al reactive phenotype, which compromises normal astrocytic
functions %% 84, Upon excessive activation, astrocytes undergo hypertrophy, upregulate glial
fibrillary acidic protein (GFAP), and form glial scars 2. These changes impede axonal
regeneration and obstruct the infiltration of oligodendrocyte progenitor cells (OPCs) to the
lesion site, thereby inhibiting effective neuronal regeneration following injury 6% 881 (Figure
1).

2.1.2. Astrocyte

The reactive astrocyte-driven glial scar formation is a major obstacle to CNS repair
following injury in mammals (%81, The glial scar plays a crucial role in stabilising the injured
tissue by restoring the physical and chemical integrity of the CNS, re-establishing the BBB,
and limiting non-CNS cell infiltration. It also creates a physical and molecular barrier that
inhibits axonal regeneration. Axonal regeneration is hindered by myelin-associated inhibitors,
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including chondroitin sulphate proteoglycans (CSPGs), Neurite Outgrowth Inhibitor-A (Nogo-
A), myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein
(OMGP), which are produced by glial scars %, This inhibitory effect is compounded by the
inefficient clearance of myelin debris by microglia [,
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Figure 1. Schematic illustration of scar formation in a lesioned mammalian brain. (A) Following mammalian
brain injury, disruption of the blood brain barrier (BBB) triggers macrophage infiltration, astrocyte activation,
and fibroblast invasion to the lesion site. (B) Fibroblasts proliferate to form a fibrotic scar, while astrocytic
processes restore the BBB integrity and seal the lesion with glia limitans. The resulting glial scar isolates the
injury but blocks neuronal regeneration in mammalian brain. Source of information: 67, Remark: Part of this
image was created with BioRender (BioRender.com).

2.1.3. Oligodendrocyte

Recent studies of postmortem PD brain tissue demonstrated significant co-localisation
of oligodendrocytes, with alterations in these cells occurring before the onset of motor
symptoms and pathological changes in the SNpc [ 72, suggesting their potential involvement
in the pathophysiology of PD. While the association between oligodendrocytes and PD is
increasingly recognised, the precise molecular mechanisms underlying oligodendrocytes’
role in immune responses remain poorly understood, as their involvement was previously
overlooked [ 74, Oligodendrocytes are essential for maintaining neural function by producing
the myelin sheath around nerve fibres. As such, oligodendrocytes are likely to play a role in
neurodegeneration through interactions with microglia and astrocytes, which release cytokines
that regulate oligodendrocyte survival and differentiation, thus influencing myelin formation
[60. 751 Damage to or reduced production of oligodendrocytes disrupts myelin production,
impairing electrical impulse transmission and contributing to the progression of
neurodegenerative diseases [/6].
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Additionally, growing evidence highlights the involvement of dendritic cells, B cells,
and T cells as potential biomarkers and therapeutic targets in PD. These cells are integral to
both the initiation and modulation of immune responses. Dendritic cells have been shown to
capture and process a-synuclein into small peptides, which are then presented on their surface
in association with co-stimulatory molecules to T cells, thereby initiating an adaptive immune
response that targets dopaminergic neurons "1, Chronic inflammation in PD suggests that T
cell immunity is critical for disease onset and triggering humoral responses, while humoral
immunity contributes to further disease development [8-8°],

2.2. Roles of Glia and the Absence of Glial Scarring following Injury in the Zebrafish Brain

The zebrafish brain demonstrates a strong regenerative response to injury, driven by
immune cell-progenitor cell interactions. Following neuronal loss in the zebrafish brain, a
complex series of cellular events is initiated, involving the recruitment and/or proliferation of
various cell types, including microglia, peripheral immune cells, oligodendrocytes and
endothelial cells. Understanding the immune responses is critical, as it plays a central role in
regulating the zebrafish regenerative response to injury, particularly by influencing the
behaviour of neural stem cells and progenitor cells.

While the neuroinflammatory response in zebrafish shares several parallels with that of
mammals, a key distinction lies in the temporal dynamics of resolution: inflammation in
zebrafish is rapid and transient, avoiding the formation of a permanent glial scar, a hallmark of
CNS injury in mammals 83, This regenerative permissiveness is attributable to several unique
features. Firstly, microglial activation is short-lived, with early pro-inflammatory responses
(e.9., TNF-0, IL-1P) peaking within 1-3 days of injury, followed by a swift transition to anti-
inflammatory states characterised by the release of mediators such as Transforming Growth
Factor-B (TGF-B) and IL-10 8281 This rapid switch facilitates efficient debris clearance while
limiting chronic inflammation. Secondly, unlike mammals, zebrafish lack stellate
(protoplasmic) astrocytes. Instead, GFAP-positive radial glia persist throughout adulthood,
functioning not only as neural progenitors but also as regulators of the immune
microenvironment 4 &l The presence of radial glia cells enables injury-responsive
proliferation without astrocyte-driven scarring. Thirdly, astrocyte-like scarring is absent;
zebrafish resolve inflammation without forming permanent scar tissue, thereby maintaining a
permissive environment for axonal regeneration and progenitor integration (#6881 (Table 1).
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Table 1. Comparison of neuroinflammation response of glial cells after brain damage in mammals and
zebrafish.

Glial cells Mammals Zebrafish

Microglia reactivity Present Present

Presence of astrocyte Present Absent
Proliferation of radial glia cells Absent Present

Glial scar formation Present Absent
Oligodendrocytes precursor cells Present but dependent on site of

. . Present .
(OPC) proliferation injury

In mammals, microglia and astrocytes contribute to a pro-inflammatory environment and glial scar formation,
which restricts regeneration. On the contrary, zebrafish lack astrocytes and glial scarring but exhibit robust
radial glia proliferation, supporting a regenerative milieu. Although oligodendrocyte progenitor cells (OPCs)
proliferation occurs in both species, it is injury-site dependent in zebrafish, reflecting a more context-specific
regenerative strategy. These distinctions underscore why zebrafish provide a valuable model for studying
neuroregeneration, offering insights into mechanisms absent or limited in mammals. Source of information: (],

On another note, even though the mechanisms governing the crosstalk between
immune cells and ependymal glial cells have been studied, the specific role of OPCs in the
critical time window that facilitates neuronal integration during regeneration remains less well
understood. In zebrafish telencephalic impaired models, injuries along the rostro-caudal axis
did not induce significant proliferation or recruitment of OPCs to the damaged site. In contrast,
dorso-ventral injuries led to a prolonged accumulation of OPCs at the injury site. This
differential response suggests that the nature of the injury influences OPC activation and
accumulation, potentially impacting regenerative outcomes. Further investigations revealed
that Toll-like receptor 2 (TLR 2) and chemokine receptor 3 (Cxcr3) played critical roles as
regulators of OPC proliferation. Specifically, interference with these innate immune signalling
pathways resulted in the alleviation of excessive OPC accumulation at the injury site, which

not only promoted more efficient wound healing but also enhanced restorative neurogenesis
[89]

3. Adult Neurogenesis Potential in Mammalian and Non-Mammalian Brains: Insights
into Zebrafish Neuroregeneration

The belief that the adult brain is incapable of regenerating new cells persisted in
neuroscience until Altman and Das % discovered neurogenesis in the hippocampus of adult
rodents. This groundbreaking finding was later supported by numerous studies, establishing
that adult neurogenesis occurs in various species, even though at varying degrees of efficiency
[91-9] "1n PD, for instance, more than 80% of dopaminergic neurons in the SNpc may be lost
before symptoms appear, showcasing the remarkable functional compensatory capacity of the
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human brain. This compensatory mechanism triggers a cascade of growth-related events,
enabling surviving neurons, both near and distant from the lesion site, to survive, repair, and
form new connections. Although endogenous repair mechanisms are present in the adult
mammalian brain, their regenerative potential is limited, leaving many patients with
neurodegenerative diseases or brain injuries living with enduring deficits. These regenerative
processes are also inefficient in other mammalian models, such as mice, with only 0.2% of
neurons differentiating into mature cells 281,

Given these limitations in cellular recovery in mammals, considerable attention has
been directed towards non-mammalian models to investigate successful neuroregeneration.
Neurogenesis in non-mammals occurs over a longer period and is significantly more extensive
than in mammals. However, despite evidence of regeneration in the CNS and Peripheral
Nervous System (PNS) of non-mammals, newly formed neurons in species like salamanders
and newts do not show functional restoration due to a lack of innervation 1. Among the non-
mammalian models, zebrafish have emerged as an excellent model for studying neurogenesis,
owing to their significant brain homology with humans and their remarkable ability to fully
regenerate lost neurons following brain injury. Neurogenesis is a tightly regulated process
involving proliferation, migration, and differentiation, coordinated by signals from
neighbouring cells. This cellular recovery in zebrafish is also accompanied by the restoration
of sensory and motor functions, with neurogenesis occurring continuously throughout their
lifespan 7],

3.1. Proliferation of Newly Generated Cells in the Neurogenic Niches of Mammalian and
Zebrafish Brains

Research has identified specific neuronal populations or neurogenic niches within the
brain that contribute to adult neurogenesis [ %1, These areas, rich in neural stem cells with
stem cell-like properties, can generate new neurons in response to injury, aiding recovery by
integrating into existing neural circuits [1° %3 However, neurogenic niches vary across
species, influencing neuroregeneration efficiency in different injury contexts [102 1031,

In the mammalian models, adult neurogenesis does not occur throughout the brain area
and is highly restricted to two regions, the subependymal zone (SVZ) of the lateral wall of the
ventricle and the subgranular zone (SGV) of the hippocampus [°®! (Figure 2a). Both the SVZ
and SGZ house heterogeneous populations of active progenitor cells, predominantly glial cells,
which maintain homeostasis and support neural tissue [ 1%l Studies show that glial cells in
these regions function as neural stem cells, generating neurons through intermediate stages of
cell differentiation [1%°]. The S\VZ, located in the telencephalic lateral ventricle, is the primary
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site of adult neurogenesis, with progenitor cells migrating to the olfactory bulb where they
differentiate into neurons and integrate into the granule and periglomerular layers into neural
networks. In rodents, these neuroblasts travel via the rostral migratory stream (RMS), but in
humans, the SVZ differs morphologically, lacking a prominent RMS [07: 1081,

Similar to mammalian cells, adult zebrafish brain cells retain stem cell-like properties
681 However, non-mammalian brains, like those of zebrafish, contain embryonic-like pockets
of cells that serve as intermediate stages between the germinal zone of the developing brain,
contributing to greater neuroregeneration compared to mammals 2%, Zebrafish regeneration
is not restricted and occurs widely across 16 distinct neurogenic niches, where new neurons are
continuously generated and integrated into other brain regions. The presence of these areas
explains why the high rate of proliferating neurons in the zebrafish brain is about double the
amount in the adult mammalian brain % (Figure 2b). Notably, the dorsal and ventral pallium
of zebrafish share substantial homology with mammalian neurogenic niches, making them key
areas for studying regenerative processes 4. Within these proliferative domains, two distinct
populations of label-retaining cells were identified: (a) slow-cycling cells along the ventricular
surface, and (b) fast-cycling cells organised mainly in a subpallial cluster. Both populations
indicate the presence of self-renewing neuronal precursor cells, crucial for sustaining
continuous neurogenesis in the adult zebrafish brain.

Subventricular zone

a)

Figure 2. Different neurogenic niches (in blue) in the brains of adult (A) mammal and (B) zebrafish. Source of
information: (%6

Various signalling pathways, such as Sonic Hedgehog (Shh), Wingless-related
integration site (Wnt) and Notch, are recognised as key regulators of progenitor cell
proliferation during adult zebrafish neurogenesis, with Notch signalling being one of the most
prominent [1*2 (Figure 3). Notch receptors, particularly Notch3, play a crucial role in
modulating progenitor cell activity and neurogenesis in the adult zebrafish brain. These
receptors are predominantly expressed in proliferating glial cells across multiple neurogenic
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niches, including the dorsal and ventral telencephalon, hypothalamus, optic tectum, and
cerebellum. Notch receptors are essential for the maintenance and activation of progenitor cells,
with their expression varying regionally and cell-specifically. Notch3 appears to be more
closely associated with promoting glial characteristics in progenitors and glial cells, while
Notchla and Notchlb likely modulate progenitor proliferation in a dose-dependent manner.
The combinatorial activity of these receptors is crucial for maintaining neural stem cells
populations, as evidenced by a study that demonstrated that inhibition of Notch signalling via
y-secretase inhibitors significantly reduced progenitor cell proliferation in the adult zebrafish
brain (%1, Furthermore, Notch signalling is implicated not only in neurogenesis but also in
processes such as neuronal maturation, oligodendrogenesis, and vascular homeostasis,
highlighting its multifaceted and indispensable role in zebrafish brain regeneration 1131,
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Figure 3. Signalling pathways that regulate progenitor cell proliferation during adult zebrafish neurogenesis.
(@) Notch signalling: Binding of Delta/Jagged ligands activates the Notch receptor, releasing the Notch
intracellular domain (NICD), which translocates to the nucleus, binds Recombination Signal Binding Protein
for Immunoglobulin Kappa J Region (Rbpj), and induces Hairy and Enhancer of split/Human Epidermal
Growth Factor Receptor (Hes/Her) transcription factors that repress proneural gene expression. (b) Wingless-
related integration site (Whnt)/B-catenin signalling: Binding of Wnt to the Frizzled (Fzd) receptor activates
Dishevelled (Dvl), inhibits the destruction complex [Axin, Adenomatous Polyposis Coli (APC) and Glycogen
Synthase Kinase 3 Beta (GSK3pB)], and promotes [B-catenin accumulation. Stabilised B-catenin enters the
nucleus, binds Transcription Enhancer Factor / T-cell Factor (TEF/TCF), and drives transcription of
proliferation-associated genes. (c) Sonic Hedgehog (Shh) signalling: Binding of Shh to Protein patched
homolog 1 (Ptchl) relieves inhibition of Smoothened (Smo), activating downstream Glioma-associated
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oncogene (Gli) transcription factors that regulate Shh target genes. Additional interactions with Biregional
Cdon-binding protein/ Cell adhesion molecule-related/down-regulated by oncogenes (Boc/Cdon), Ras-related
C3 botulinum toxin substrate 1 (Racl), Dedicator of cytokinesis (Dock), and Engulfment and cell motility
(Elmo) influence cytoskeletal remodelling during progenitor responses. Source of information: 41171, Remark:
Part of this image was created with BioRender (BioRender.com).

Rather than functioning in isolation, the Wnt/B-catenin signalling pathway operates as
part of a complex regulatory network, interacting with other key pathways such as
Transforming Growth Factor-f/Bone Morphogenetic Protein (TGF-/BMP), Phosphoinositide
3-Kinase/Protein Kinase B (PI3K/AKT), Notch, and Shh, through intricate cross-regulatory
mechanisms that directly or indirectly influence the expression of downstream genes associated
with these pathways. Wnt ligands bind to Frizzled (FZD) receptors and lipoprotein-related
receptors 5 and 6 (LRP5/6) co-receptors, activating Dishevelled (DVL) and inhibiting the -
catenin destruction complex composed of Axin, Adenomatous Polyposis Coli (APC) and
Glycogen Synthase Kinase 3 Beta (GSK3p). This inhibition stabilises -catenin, allowing its
accumulation and nuclear translocation. In the nucleus, B-catenin associates with T cell
factor/lymphoid enhancer factor family (TCF/LEF) transcription factors to activate target
genes such as MycProto-Oncogene Protein (c-Myc), Cyclin-Dependent Kinase Inhibitor 1D
(cyclin D1), Cyclooxygenase-2 (COX-2), and Matrix Metalloproteinases (MMPs), which drive
cell proliferation and migration (1281,

The Shh pathway, another major regulatory axis, is mediated by Patched (Ptch1/2) and
Smoothened (Smo). In the absence of ligands, Ptch inhibits Smo activity. Ligand binding
relieves this inhibition, allowing Smo to activate the Glioma-associated oncogene (Gli)
transcription factors. function primarily as activators, while Gli3 acts mainly as a repressor,
thereby regulating the expression of Shh target genes (% These Shh-responsive cells
subsequently function as rapidly proliferating, multipotent neural progenitors that give rise to
new neurons (129,

3.2. Mechanisms of Neuroblast Migration in Mammalian and Zebrafish Brain Injury Repair

Following brain injury in both mammalian and non-mammalian species, neuronal
precursor cells migrate to the damaged area, where they attempt differentiation and repair [,
This migration is a complex process that involves a combination of cellular structures, signals,
and cues, primarily directed by neuroblasts [*21], Neuroblast-derived migration is guided by a
series of steps involving the extension of the leading process, centrosomal migration, and somal
translocation. Importantly, targeted migration in zebrafish is orchestrated by chemotactic
cues, most notably Stromal cell-derived factor 1 / C-X-C motif chemokine ligand 12
(SDF1/Cxcl12), which interacts with its receptor C-X-C chemokine receptor type 4 (Cxcr4)
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on migrating neuroblasts. This signalling axis directs cells along the injury-induced
chemokine gradients, thereby ensuring efficient recruitment of progenitor cells to the lesion
sites [122],

The movement is regulated by both cytoskeletal dynamics and external guidance cues
such as growth factors [insulin-like growth factor | (IGF-I), vascular endothelial growth factor
(VEGF), and fibroblast growth factor 2 (FGF2)] and cell adhesion molecules. These
neuroblasts utilise scaffold-like astrocytic processes, blood vessels, and extracellular matrix
components to aid in their migration. Brain-derived neurotrophic factor (BDNF), which is
secreted by blood vessels, plays a crucial role in promoting neuroblast migration by binding to
the p75 neurotrophin receptor (p75NTR) receptor, thereby increasing the number of migratory
cells. It also facilitates the transition of neuroblasts from a mitotic to a motile state, thereby
enhancing their displacement over greater distances. During migration, neuroblasts are directed
along the RMS within glial tubes formed by astrocytes, which help maintain their confinement,
prevent dispersion, and ensure proper guidance %3,

The mechanisms underlying neuronal migration are conserved across vertebrates, with
neuroblasts exhibiting analogous migratory behaviours in both mammals and non-mammals.
However, the intrinsic repair mechanisms of the mammalian brain are largely ineffective,
particularly when dealing with large lesions, as migration is typically limited to short distances
or impaired in mammalian neurodegenerative animal models [*24. In contrast, newly generated
cells in the zebrafish brain have been shown to undergo lateral migration of neural progenitors
from the telencephalic ventricular zone towards the injury site on dorsolateral domain of the
telencephalic hemisphere 1% as well as migration from the neurogenic regions of the
telencephalon and olfactory bulb to the diencephalon [12°],

3.3. Differentiation of Newly Generated Cells into Mature Neurons in Non-Mammalian Brains

While there is an increase in proliferating neurons after the cessation of protein
aggregate expression, these neurons do not differentiate into mature neurons, a limitation that
is often observed in mammalian neurogenesis models of brain pathology B! 1261, As such,
neuroregeneration in mammals is highly restrictive and thus makes it an unsuitable model to
understand the differentiation process [*2% 28 Conversely, in injured zebrafish, newly
regenerated cells, following significant proliferation and migration, are capable of
differentiating into mature neurons. This is evidenced by the expression of the postmitotic
marker HUC/ELAVL3 and HuD/ELAVL4 neuronal RNA-binding proteins (HUC/D) and
polysialylated neural cell adhesion molecule (PSA-NCAM), a marker of early neuronal
differentiation, after the cells migrate to the lesion site (111,
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Although the regulation of differentiation in adult neurogenesis is not fully understood,
a variety of pathways and neurotrophic factors, including Glial cell line-derived neurotrophic
factor (GDNF), BDNF, Fibroblast Growth Factor (Fgf), Shh, Wnt, Notch, and BMP (Bone
Morphogenetic Protein), are hypothesised to play key roles in modulating this process %1,
Additionally, transcription factors such as Paired-like homeodomain transcription factor 3
(pitx3), LIM homeobox transcription factor 1 beta (Imx1b), Nuclear receptor subfamily 4 group
A member 2 (nr4a2a), Forkhead box protein A2 (foxa2), and Orthopedia protein (otpb) are
also critical for dopaminergic differentiation (Table 2).

Table 2. Key transcription factors that regulate dopaminergic neuron differentiation in zebrafish.

Transcription Factor Role in Dopaminergic Differentiation References
Paired-like homeodomain e Regulates terminal differentiation and survival (129]
transcription factor 3 (pitx3) of dopaminergic neurons;

e« Tyrosine Hydroxylase (TH) expression

e  Maintenance of mature dopaminergic identity

LIM homeobox transcription e  Essential for dopaminergic progenitor [130]
factor 1 beta (Imx1b) specification
e Interacts with Glial cell line-derived
neurotrophic factor (GDNF) signalling to

promote differentiation

Nuclear receptor subfamily e Controls expression of dopaminergic markers (131
4 group A member 2 such as TH and Dopamine transporter (DAT)

(nr4a2a) e Necessary for dopaminergic neuron maturation

Forkhead box protein A2 e Regulates early patterning and dopaminergic (1321
(foxa2) neuron lineage commitment

e  Cooperates with nr4a2 in specification

Orthopedia protein (otpb) e Promotes differentiation of diencephalic (133]

dopaminergic neurons

e Implicated in progenitor cell fate determination

A study of GDNF-deficient zebrafish larvae showed a significant reduction in
dopaminergic neurons, confirmed by Enhanced Green Fluorescent Protein—positive / Tyrosine
Hydroxylase—positive (EGFP+/TH+) neuron counts and impaired locomotor activity. Further
investigation into how GDNF influences dopaminergic neuron specification and differentiation
revealed its potential interaction with key transcription factors such as Imx1b.1 and otpb, which
likely regulate dopaminergic progenitor cell fate %01,
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4. Conclusion and Future Perspective

PD remains a significant global health challenge due to its increasing prevalence and
the lack of disease-modifying therapies. Despite advances in pharmacological treatments,
current therapeutic strategies primarily alleviate symptoms rather than halt disease progression.
Neuroregeneration has emerged as a promising therapeutic strategy, with zebrafish serving as
a valuable model for understanding the cellular and molecular mechanisms of
neuroregeneration. In contrast to mammals, which exhibit limited regenerative capacity,
zebrafish demonstrate the ability to regenerate lost neurons and restore function through a
highly efficient process involving proliferation, migration, and differentiation of progenitor
cells. This review highlights the significance of understanding the cellular responses to injury,
neurogenic niches, and transcriptional pathways involved in zebrafish neurogenesis, providing
valuable insights into promoting the regeneration of dopaminergic neurons.

Comparative analyses with mammalian systems highlight critical barriers to
regeneration in humans, including the formation of inhibitory glial scars and limited progenitor
areas. Insights gained from zebrafish models are increasingly informing strategies aimed at
promoting neuroregeneration in the mammalian brains. Further research into the interaction
between immune cells (particularly microglia, astrocytes and oligodendrocytes) will be vital
for advancing regenerative treatments for PD. Moreover, uncovering the role of conserved
signalling pathways, such as Notch, Wnt/B-catenin, and Shh, in regulating progenitor fate
decisions may offer translational potential for guiding cell-based therapies. Harnessing the
regenerative capacity of the zebrafish brain offers promising avenues for developing therapies
to restore dopaminergic circuits in PD. Future research efforts, which include Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)-mediated perturbation of
Notch3 to define its role in progenitor maintenance, high-resolution in vivo imaging to track
immune-progenitor interactions during regeneration and single-cell transcriptomic mapping
to resolve the molecular heterogeneity of neurogenic niches, can be performed to elucidate
the molecular basis of zebrafish neuroregeneration and thereby yield insights into the design
of regenerative therapies for PD. However, translating the findings from zebrafish to
mammals remains challenging. Some of the key obstacles include differences in neurogenic
niche organisation, limited progenitor availability, inhibitory glial scar formation, and the
difficulty of scaling up regenerative mechanisms to the complexity of the human brain.
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