Table S1. Preclinical anticancer activities and molecular mechanisms of α-mangostin in other cancer types not included in Table 1. Note that "–" indicates unavailable data.

Cancer Type	Preclinical Type	Preclinical Model	Treatment Period (Dosage)	Half-Maximal Inhibitory Concentration (IC50)	Therapeutic Effect	Molecular Mechanism	Reference
НСС	In vitro	Human anoikis- resistant or parental hepatocellular carcinoma cell (HepG2)	24 h (0 - 20 μM)	In adherent (parental) cells: 5.5 µM (CI not available) In suspended (anoikis-resistant) cells: 14 µM (CI not available)	Induced apoptosis; Abrogated metastasis phenotype of both anoikis-resistant (suspension) and the parental (adherent) HepG2 cells; Suppressed EMT; Promoted anoikis in both cells	†activity of cleaved caspases-3 and pro-apototic proteins - Bax, BimEL and t-Bid and \partial activity of pro-caspases - 8,9 and anti-apoptotic proteins - c-FLIP and Mcl-1; \pexpression of MMP-2 and MMP-9; \pexpression of E-cadherin and \pexplession of N-cadherin, vimentin, integrin \alpha v and integrin \beta 1; Downregulated of the PI3K/AKT and ERK pathways - \phosphorylation	[1]
GBC	In vitro	Human gall bladder cancer cells (GBC-SD and NOZ)	24, 48, and 72 h (0 - 16 μ M), combined with gemcitabine (0, 10^{-3} , 10^{-2} , 10^{-1} , 1,	5 μM (CI not available)	Suppressed proliferation and colony formation; Induced apoptosis;	of AKT and ERK ↑BAX expression and ↓PCNA and Bcl-2 expression; ↓SERB1, FASN and ACC	[2]

			$10^{1},10^{2}$ and 10^{3} $\mu M)$		Inhibited lipogenesis	expression and †p-AMPK expression	
GBC	In vivo	Male BALB/c nude mice xenografted with NOZ cells	Daily for 4wks AM: (2 mg/kg) + gemcitabine (40 mg/kg)	-	Potentiated gemcitabine- induced inhibition of tumor growth	-	[2]
OR	In vitro	Human oral squamous cell carcinoma (HOSCC) cells (HSC-2, HSC-3, HSC-4, Ca9-22 and SAS)	24 h (20 μM), combined with recombinant human TRAIL (100 ng/ml)	-	Suppressed proliferation; Induced apoptosis; Caused cell-cycle arrest at S/G2/M-phase	†caspase-9,-3 and 7 expression and release of cytochrome c from mitochondria	[3]
OR	In vitro	Human tongue squamous cell carcinoma (SCC25)	24 h (1.95 – 259 μg/ml), coated in mucoadhesive film	152.5 μg/ml (CI not available)	Reduced HPV-16 pseudovirus- infected cells; Inhibited inflammation Enhanced	-	[4]
GC	In vitro	GC cell line SGC7901 and CDDP-resistant GC cells (SGC7901/CDDP)	24 or 48 h (15, μM) + cisplatin (CDDP) (2 μg/ml)	48 h: SGC7901: 12.86 (CI not available) μMSGC7901/CDDP: 13.69 μM (CI not available)	sensitivity of SGC7901/CDDP to CDDP; Induced apoptosis; Enhanced CDDP-induced autophagy; Modified cell proliferation, autophagy and apoptosis	↑BAX, cleaved caspase-3 and -9; ↑LC3-II/I and Beclin1, while↓p62; ↓EB13 and p- STAT3/STAT3 ratio	[5]
GC	In vitro	Human gastric adenocarcinoma cell lines (BGC- 823 and SGC- 7901)	Cell viability: 6, 12, 18, 24, and 48 h (0 – 10 μg/ml); Apoptosis: 6, 18, 24 h (7 μg/ml)	-	Inhibited cell proliferation; Induced apoptosis	Release cytochrome c and AIF — mitochondrial dysfunction; Inhibited STAT3 activation, \p-	[6]

SC	In vivo	ICR female mice with DMBA/TPA- induced skin tumors	Once daily until death (5 and 20 mg/kg)	Inhibited skin tumorigenesis and inflammation; Accelerated apoptosis; Promoted autophagy in skin tumors; Inhibited tumor proliferation	STAT3, Bcl-xL and Mcl-1 ↓ pro- inflammatory factors – IL-1b, IL-4 and IL-8 expression and ↑ anti-inflammatory factor – IL- 10; ↑pro-apoptotic factors - Bax, Bad, cleaved caspase-3 and cleaved PARP expression and ↓anti-apoptotic factors - Bcl-2 and Bal-xl expression; ↑LC3, LC3-II and Beclin1 expression and ↓p62 and LC3-I expression; Suppressed p- PI3K, p-AKT and p-mTOR expressions	[7]
----	---------	---	---	--	---	-----

(The upward and downward arrows represent increased (†) and decreased (↓) levels of specific molecules or expressions, respectively. The numbers in the "Therapeutic Effect" column correspond to the same numbered mechanisms in the "Molecular Mechanism" column.

References:

- 1. Wudtiwai B, Pitchakarn P, Banjerdpongchai R. Alpha-mangostin, an active compound in Garcinia mangostana, abrogates anoikis-resistance in human hepatocellular carcinoma cells. Toxicol In Vitro 2018; 53: 222-232.
- 2. Shi Y, Fan Y, Hu Y, *et al.* α-Mangostin suppresses the de novo lipogenesis and enhances the chemotherapeutic response to gemcitabine in gallbladder carcinoma cells via targeting the AMPK/SREBP1 cascades. J Cell Mol Med 2020; 24(1): 760-771.

- 3. Fukuda M, Sakashita H, Hayashi H, *et al.* Synergism between α-mangostin and TRAIL induces apoptosis in squamous cell carcinoma of the oral cavity through the mitochondrial pathway. Oncol Rep 2017; 38(6): 3439-3446.
- 4. Tangsuksan P, Chuerduangphui J, Takahashi Yupanqui C, *et al.* Mucoadhesive film containing α-mangostin shows potential role in oral cancer treatment. BMC Oral Health 2021; 21(1): 512.
- 5. Li RR, Zeng DY. The effects and mechanism of α-mangostin on chemosensitivity of gastric cancer cells. Kaohsiung J Med Sci 2021; 37(8): 709-717.
- 6. Shan T, Cui XJ, Li W, *et al.* α-Mangostin suppresses human gastric adenocarcinoma cells in vitro via blockade of Stat3 signaling pathway. Acta Pharmacol Sin 2014; 35(8): 1065-1073.
- 7. Wang F, Ma H, Liu Z, *et al.* α-Mangostin inhibits DMBA/TPA-induced skin cancer through inhibiting inflammation and promoting autophagy and apoptosis by regulating PI3K/Akt/mTOR signaling pathway in mice. Biomed Pharmacother 2017; 92: 672-680.