Supplementary materials **Table S1:** Categorization of Studies by Autophagy Type and Compound. Table categorizes the included studies details based on the type of autophagy investigated and the specific pure compound examined. | Plant name, common & scientific name, part (root/flower/leave, etc. used), country | Source | Pure compounds | Human disease
(Cell lines/ animal
models) | Results | Autophagy
Type/Regulatory
Pathway | Reference | |--|--|--|---|--|---|-----------| | Aloe vera, Aloe
barbadensis miller,
Serbia | | Aloe emodin | glioma cells and
human U251 glioma
cells) | Anti-glioma activities: ↑ Cytotoxicity in both glioma cells, ↑ PI-stained cells and caspase activation that induce apoptosis in both cell lines Autophagic enhancement: ↑ AO-stained acidic cytoplasmic vesicles in C6 glioma cells in both cell lines | Microautophagy | [54] | | Goniothalamus
species, Brazil | Chemically
synthesized | Goniothalamins, styryl
lactone family | 786-0 kidney cancer | Anti-proliferative activities: ↑ Cell cytotoxicity and NOS activity inhibition, ↓ Bcl-2 anti-apoptotic marker and ↑ PARP cleavage that induce cell apoptosis Autophagic enhancement: ↑ LC3-II autophagic marker | Macroautophagy | [21] | | Bai Shao, <i>Radix</i>
paeoniae alba
(root), China | Purchased from
National Institute
for the Control of
Pharmaceutical and | Paeoniflorin | PC-12
pheochromocytoma | Neuroprotective activities: ↑ cell viability against MPP ⁺ and acidosis (pH5.0) insults, ↓ LDH release and apoptotic rate and ↓ | Macroautophagy | [59] | | Biological Products
of China, Beijing,
China. | intracellular Ca ²⁺ lev
pH5.0-treat cells
Autophagic enhance
↑ LC3-II/I ratio auto
and ↑ LAMP2a | ement: | |--|--|--| | | Neuroprotective act ↑ cell viability agair acidosis (pH6.0) ins differentiated PC-12 Autophagic enhance ↓ α-synuclein expre LC3-II/I ratio autop and ↓ ASICs expres lead to neuronal loss | nst MPP ⁺ and sults in 2 cells. ement: ession level, ↑ bhagic markers, ession levels that | | Purchased from
Wako Pure
Chemical
Industries, Japan | Spinal and bulbar muscular atrophy (Neuro2A, AR24Q or AR97Q-transfected NSC34 cell, and AR24Q and AR-97Q SBMA mice Protective effects: ↑ Nuclear factor-YA to enhance proteoly, autophagy in the mu transfected NSC34 of ↓ The onset of SBM ↑ Clearance of muta both SBMA cells an Autophagic enhance ↑ TFEB level, maste regulator in the mut transfected NSC34 of | utant AR97Q- cells IA in mice ant AR protein in ad mice ement: er autophagy cant AR97Q- | | Purchased from Nanjing Zelang Medical Technology | Alzheimer's disease (SH-SY5Y cells) Neuroprotective act | orylation and pathway in okadaic acid- | | | company, Nanjing
China | | ↓ Swelling and synapsis shortening, and ↑ microtubule structures of okadaic acid-treated cells ↓ Akt acitvaition and expression of calpain apoptotic marker Autophagic suppression: ↓ LC-3II/I ratio autophagic marker | | | |-----------------------|---|---|--|---|------| | vinifera (fruit skin) | Sigma Aldrich
(synthetic form) and
Chromadex (natural
form), US | cell) | amyloidogenic activity in all cell lines <i>via</i> increasing the intracellular Ca ²⁺ level. Autophagic enhancement: | Signalling
pathway | [65] | | | Source of Mega
Resveratrol, rodent
maintenance diet
supplemented with
trans-resveratrol
provided by
Candlewood Stars,
Inc., Connecticut,
United State | Amyotrophic lateral sclerosis (SOD1 mutation mice) | Neuroprotective activities: ↑ Locomotion impairment in SOD ^{G93A} mice ↓ Spinal motoneuron degeneration in L4-L5 lumbar spinal cord motoneuron of SOD ^{G93A} mice ↑ Survival time of SOD ^{G93A} mice ↑ AMPK activation in promoting mitochondrial biogenesis Autophagic enhancement: ↑ Sirt1, Beclin-1 and LC3-II/I ratio autophagic markers | Macroautophagy
and signalling
pathway | [23] | | | Purchased from
Sigma Aldrich
(R5010), China | Alzheimer's disease
(rat PC-12
pheochromocytoma
cells) | Neuroprotective activities: ↑ Viability of Aβ ₂₅₋₃₅ -induced neurotoxicity in differentiated PC-12 cells Autophagic enhancement: | Macroautophagy | [28] | | | | ↑ LC3-II/I ratio, SIRT1, and PARP1, while ↓p62 autophagic markers | | | |---|--|---|----------------|------| | Purchased from Sigma Aldrich ,China | Traumatic brain injury (Sprague Dawley rats) | Neuroprotective activities: ↓ brain oedema, ↑ learning, memory, and motor function and ↓ hippocampal neuronal damage in TBI rats ↓TLR4 protein and NF-κB p65 neuroinflammatory marker in hippocampus of TBI rats Autophagy enhancement: ↓ LC3-II//I ratio and Beclin 1 autophagic markers in the hippocampus of TBI rats | Macroautophagy | [36] | | N/A, China | Parkinson's disease
(male C57BL/6 mice) | Neuroprotective activities: ↑ Behavioural impairment of MPTP-treated mice ↑ Dopamine level and ↓ the loss nigral TH-positive neurons and striatal TH protein level in the brain of MPTP-treated mice Autophagic enhancement: ↑ SIRT1, LC3-II/I ratio and p62 autophagic markers ↓ Acetylation of LC3 level that involved in α-synuclein clearance | Macroautophagy | [30] | | Purchased from
Sigma Aldrich,
China | Spinal cord injury
(C57BL/6 mice) | Neuroprotective activities: ↑ Tissue structural and functional recovery in post-acute SCI mice ↓ Apoptosis <i>via</i> downregulation of BAX/Bcl-2 ratio | Macroautophagy | [24] | | | Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic markers | | | |---|--|---|------| | Purchased from
Dalian Meilun,
China | Spinal cord injury (female Sprague- Dawley rats) Neuroprotective activities: ↑ motor function recovery in SCI rats ↑ Viability motor neurons and ↓ lesion size of post-SCI rats ↑ Caspase-3 activation Autophagic enhancement: ↑ SIRT1 and AMPK activation ↑ LC3-II/I ratio and ↓ p62 autophagic markers | Macroautophagy
and signalling
pathway | [29] | | Purchased from
Abcam (ab120726),
China | Subarachnoid hemorrhage (male Sprague-Dawley rats) Neuroprotective activities: ↑ Survivability and neurological score, while ↓ subarachnoid hemorrhage grade and brain oedema ↓ Activation of caspase-3 and -9, BAX pro-apoptotic marker and ↑ Bcl-2 anti-apoptotic marker in brain tissue of SAH rats Autophagic enhancement: ↑ LC3-II/I ratio and Beclin-1, while ↓ p62 autophagic markers in both mRNA and protein levels of SAH rats | Macroautophagy | [25] | | Purchased from
Sigma Aldrich
(R5010), Italy | Huntington's disease (human SH-SY5Y neuroblastoma cell) Neuroprotective activities: ↑ Viability of mutant Huntingtin expressing SH-SY5Y cells ↓ Intracellular ROS in dopamine treated SH-SY5Y cells Autophagic enhancement: | Macroautophagy
and signalling
pathway | [31] | | | | s
t
1 | ↑ Number of LC3 and LAMP1 co-
stained autolysosomes in dopamine
created SH-SY5Y cells
↑ LC3-II/I and Atg4 autophagic
protein markers, and ↓ p62 protein
expression and mTOR activation | | | |---|-----|---
---|----------------|------| | Purchased from
Sigma Aldrich,
China | | cheimer's disease C12 cells) | | Macroautophagy | [26] | | Purchased from
Calbiochem, China | End | doplasmic reticulum pess (HT-22 cells) H | Neuroprotective activities: ↑ Viability of Tunicamycin induced ER stress in HT22 cells ↓ Toxicity of Tunicamycin induced ER stress in HT22 cells ↓ ER stress via ↑ GRP78 -stained cells, preserve XBP1S mRNA levels, ↑ CHOP induction, while ↓ JNK and caspase-12 activation ↑ MnSOD and CAT antioxidant enzyme activities Autophagic enhancement: ↑ LC3-II/I ratio and Beclin-1 autophagic markers ↑ Sirt3 expression level | Macroautophagy | [27] | | Synthesized and purchased from Lallilab Inc. Durham, New York, USA | Alzheimer's disease
(Male triple transgenic
AD mice) | Neuroprotective activities: ↓ NF-κB, GFAP, and PARP neuroinflammatory markers level ↓ Accumulation of toxic Aβ species in brain of transgenic AD mice ↑ Expression of both BDNF and NGF neurotrophins, and Synaptophysin and PSD95 synaptic markers in brain of transgenic AD mice ↓ Activation of caspase-3, -7, and -9 apoptotic markers Autophagic suppression: ↓ LC3-I, Cathepsin B and D, LAMP2 of autophagic markers at protein level ↑ p62 and SIRT1 protein expressions | Macroautophagy
and CMA | [32] | |--|--|---|---------------------------|------| | N/A, China | Anxiety and depression (C57BL/6J mice) | Neuroprotective activities: ↓ Anxiety-like behaviour in LPS- treated mice ↓ YAP, IL-1β, Iba-1 neuroinflammatory mRNA and protein expression in the hippocampus of LPS-treated mice Autophagic enhancement: ↑ SIRT1, ULK-1 and Atg5 autophagic marker mRNA and protein expression in the microglial from hippocampus of LPS-treated mice | Macroautophagy | [96] | | | Purchased from
TargetMol, Poland | Sanfilippo disease
(HDFa fribroblast cell
line and B6.129S6-
Baglu ^{tm1Efn} /J mouse) | Protective activities: ↓ GAG and HS levels in MPSIIIB fibroblast cell ↓ Urinary GAG level in MPSIIIB mice ↓ Hyperactivated and anxiety-related behaviours in MPSIIIB mice Autophagic enhancement: ↑ LC3-II and LAMP-2 protein expression in the brain of MPSIIIB mice ↓ p62 protein expression in liver and brain of MPSIIIB mice | | [33] | |--------------------------------------|--|---|---|---|------| | | Purchased from
Sigma Aldrich,
France | Oxiapoptophagy (N2a cells) | Neuroprotective activities: ↑ Viability of 7KC-treated N2a cells ↓ Plasma membrane damage in 7KC- treated N2a cells ↓ Intracellular ROS and ↑ antioxidant enzymatic activities ↑ MMP level and mitochondrial function ↓ Activated caspase-3 and PARP pro- apoptotic markers Autophagic suppression: ↓ LC3-II/I ratio autophagic markers | | [37] | | Berberine Chinese
medicine, China | Provided by Dr.
Kuan-Hau Lee | Amyotrophic lateral
sclerosis (N2a cells) | Neuroprotective activities: ↑ Viability and ↓ TDP-43 aggregation in transgenic cells Autophagic enhancement: ↑ LC3-II/I ratio and ↓ mTOR and p70S6K activation protein levels | Macroautophagy
and signalling
pathway | [68] | | Milk thistle,
Silybum marianum
(seeds) | Silymarin | Silibin A and B,
Isosilibinin A and B,
silicristin and
silidianin | (male Sprague-Dawley rats) | Neuroprotective activities: ↓ Number of delayed neuronal cell death and apoptotic cells in the brain of ischemic rats Autophagic suppression: ↓ Cell death by autophagy in the brain of ischemic rats ↓ MDC staining autophagic vacuoles | | [55] | |--|---------------------------------|--|---|--|----------------|------| | Whole grains | Purchased from
Sigma Aldrich | Phytic acids | (human MC-65
neuroblastoma cell and
Tg2576 mice) | Neuroprotective activities: ↑ Cell viability, ↓ intracellular free radicals and Ca ²⁺ levels in AβPP-C99-transfected MC-65 cell, ↓ plasma Cp activity Autophagic enhancement: ↑ Beclin-1 autophagic marker | Macroautophagy | [97] | | Ginseng, Panax
ginseng (Rhizome) | | Ginsenoside Rb1 | Neurological diseases
(Male Sprague-Dawley
rats) | | Macroautophagy | [98] | | | N/A | Ginsenoside Rg3 | neurodegenerative
conditions (human SK-
N-SH neuroblastoma
and mice primary
cortical cells) | ↑ Viability of PrP (106-126)-treated | Macroautophagy | [99] | | | Isolated from water extract | Ginsenoside Rg2 | pheochromocytoma
cells, and
C57BL/6JxSJL mice) | ↑ Cognitive function in 5XFAD mice | pathway | [100] | |--|---|--------------------|---|--|----------------|-------| | | Purchased from
Jilin University,
Changchun, Jilin,
China | Ginsenoside Rg1 | Depression (primary
astrocyte cells from
fetal Sprague Dawley
rats) | Neuroprotective activities: ↑ Cx43 protein level in CORT- treated astrocytes from prefrontal cortex and hippocampus ↓ Degradation of Cx43 protein level in CORT-treated astrocytes from prefrontal cortex and hippocampus Autophagic suppression: ↓ LC3-II/I ratio in astrocytes of prefrontal cortex | Macroautophagy | [101] | | Gouteng, <i>Uncaria</i> rhynchophylla (Miq.) Jacks, Hong Kong, China | Aktin Chemicals | Isorhynchophylline | PC-12 pheochromocytoma cell, mouse N2a neuroblastoma, human SH-SY5Y neuroblastoma cell, DIV7 mouse primary embryonic neurons, | ↑ LC3-II/I ratio autophagic marker in N2a, PC12, SH-SY5Y and DIV7 mouse primary embryonic neurons | | [102] | | | | | cell-transformed
dopaminergic neuronal
cell and L3 Drosophila
larvae) | ↑ Beclin-1 autophagic marker expression level in N2a cells. | | | |--|---|---------------------|--|---|----------------|-------| | Thunder god vine,
Tripterygium
wilfordii | Purchased from
Hotmed Sciences
Co. Ltd., Shanghai,
China | Celastrol | Parkinson's disease
(SH-SY5Y
neuroblastoma cell) | Neuroprotective activities: ↑ cell viability against rotenone- induced cytotoxicity ↑ intracellular SOD and GSH, MMP levels, and ↓ cytochrome C release Autophagic enhancement: ↑ LC3 II/I ratio autophagic marker and number of autophagic vacuole ↑ α-synuclein clearance | Macroautophagy | [103] | | Extra virgin olive
oil, <i>Olea europaea</i>
(fruit) | • | Oleuropein aglycone | (mouse N2a
neuroblastoma, and
TgCRND8 mice), Italy | Neuroprotective activities: ↑ Cognitive performance in TgCRND8 β-amyloid deposition mice model ↓ β-amyloid levels and plaque deposit, ↑ phagocytic microglial migration, ↓ astrocyte reaction in cerebral tissue analyses of TgCRND8 mice Autophagic enhancement: ↑ Beclin-1 and LC3II/I ratio, p62 autophagic markers expression in N2a cells ↑ Beclin-1 and LC3II/I autophagic markers, Cathepsin B and p62 stained autophagosome-lysosome fusion in cortex of TgCRND8 mice | Macroautophagy | [10] | | | | | | Neuroprotective activities: | Macroautophagy | [104] | ## Progress in Wicrobes and Wolcoular Biology (H) | | | ↑ animal behaviours and memory dysfunction of
TgCRND8 mice ↓ Amyloid-β deposition in the brain tissue ↑ Proliferation of newborn cells in the subgranular zone of the hippocampus Autophagic enhancement: ↑ Beclin-1, LC3 and cathepsin B autophagic markers in the brain tissue | | | |--|--|--|-----------------------|-------| | | (human SH-SY5Y neuroblastoma cells, and middle-aged TgCRND8 mice), Italy | Neuroprotective activities: ↑ pE3- β-amyloid clearance in the in pE3-β-amyloid-treated SH-SY5Y cell and pE3-β-amyloid-treated middle-aged TgCRND8 mice ↑ glutaminyl cyclase in the brain tissues of pE3-β-amyloid-treated middle-aged TgCRND8 mice Autophagic enhancement: ↑ Beclin-1 and LC3-II autophagic markers in both in the brain tissues of pE3-β-amyloid-treated middle-aged TgCRND8 mice | Macroautophagy | [105] | | | (human SH-SY5Y neuroblastoma cells, and TgCRND8 mice), Italy | | Signalling
pathway | [11] | | Purchased from
Sigma Aldrich,
Canada | | Parkinson's disease (ra
PC-12
pheochromocytoma
cell) | tNeuroprotective activities: ↑ Viability of 6-OHDA treated PC12 cells ↓ Superoxide production in 6-OHDA treated PC12 cells Autophagic enhancement: ↑ LC3-II/I and p62 autophagic markers in 6-OHDA treated PC12 cells | Macroautophagy | [12] | |--|---|---|--|----------------|-------| | N/A, Italy | Hydroxytyrosol | Alzheimer's disease
(TgCRND8 mice) | Neuroprotective activities: ↑ Memory performance and cognitive function in treated- TgCRND8 mice ↑ Clearance of Aβ deposition in the parietal cortex and hippocampus in treated- TgCRND8 mice ↓ TNF-α expression at mRNA level ↓ SAPK/JNK activation and ↑ ERK1/2 activation at protein level Autophagic enhancement: ↑ LC3 autophagic marker | Macroautophagy | [13] | | | Oleuropein aglycone
and hydroxytyrosol | Alzheimer's disease
(SH-SY5Y cells) | Neuroprotective activities: ↑ Viability of Aβ-treated SH-SY5Y cells ↑ MMP level and mitochondrial function Autophagic enhancement: ↑ Number of autophagosomes ↓ Activation of S6 ribosomal protein, while ↑ULK1 activation | Macroautophagy | [106] | | | | | | ↑ LC3-II/I ratio and Beclin-1
autophagic markers, and ↓ p62
protein expression | | | |-----------------------------------|---------------------------------|----------|--|---|---------------------------|------| | Turmeric, Curcuma longa (Rhizome) | Purchased from
Sigma Aldrich | Curcumin | Genetic based Parkinson's disease (SH-SY5Y neuroblastoma cell) | Autophagic enhancement: † α-synuclein clearance in A53T α- synuclein transfection of differentiated SH-SY5Y cells ‡ p-mTOR and p-p70S6K autophagic markers in A53T α- synuclein transfection of differentiated SH-SY5Y cells | Signalling
pathway | [69] | | | N/A | | Epilepsy (male
Sprague-Dawley rats) | Neuroprotective activities: ↑ Viability and ↓ apoptosis in hippocampal cells of lithiumpolicarpine treated static epilepsy rats ↓ MLKL and RIP-1 necroptosis markers Autophagic enhancement: ↑ Number of autophagosomes ↑ LC3-II/I ratio and Beclin-1 autophagic markers | Macroautophagy | [41] | | | Purchased from
Sigma Aldrich | | Alzheimer's disease
(N2a cells) | Neuroprotective and autophagic enhancement: ↑ Number of autophagosomes in APP695swe transfected N2a cells ↑ LC3-II autophagic marker, and ↓ p62 expression at mRNA level ↑ Beclin-1, Atg5, and Atg16L1 autophagic markers at protein level | Macroautophagy
and CMA | [42] | | | | | | ↑ LAMP2 lysosomal protein to induce autophagosome-lysosome binding ↑ Retrograde axonal transport molecular motor and scaffolding proteins expression (DIC, DHC1, and DLC-3) | | | |-------------------------------------|---------------------------------|------------|---|---|---|-------| | | N/A | | Autophagic study
(MN9D cells) | | Macroautophagy
and signalling
pathway | [43] | | Evodia rutaecarpa
Bentham, Korea | Purchased from
Sigma Aldrich | Evodiamine | Cerebral Ischemia
(human U87-MG
astrocytes) | Neuroprotective activity: ↑ TRPV-1-mediated JNK activation Autophagic enhancement: ↑ LC3II/I ratio autophagic marker, AO-stained autophagosomes in U87- MG cells. ↑ TRPV1-mediated autophagy | Macroautophagy | [107] | | Nigella sativa
(seed)m US | Purchased from EMD Chemicals | Thymoquinone | Brain Tumour (human
T98G, U87MG and
Gli36ΔEGFR
glioblastoma cells) | Neuroprotective activity: ↑ Cell cytotoxicity on all glioblastoma cell lines but not on normal human astrocytes ↑ lysosome membrane permeabilization-associated cathepsin B release to induce caspase-dependent apoptosis Autophagic inhibition: ↑ LC3-II and LC3-associated protein p62 levels ↓ AO-stained cytoplasmic vacuolization that induces lysosome membrane permeabilization | Macroautophagy | [108] | |------------------------------|--|--------------|---|---|---|-------| | Fructus arctii | Isolated from crude extract using HPLC | Arctigenin | Alzheimer's disease (HEK293-APP _{swe} , mouse BV-2 microglia cells, mouse primary cortical neurons, astrocytes and APP/PS1 mice) | Neuroprotective activity: ↑ Amyloid-β clearance in all cell llines ↑ Memory impairment in APP/PS1 AD mice ↓ Senile plaque and Amyloid-β clearance in the brain tissues of APP/PS1 AD mice Autophagic enhancement: ↓ AKT/mTOR activation that further lead to Amyloid-β clearance | Signalling
pathway | [66] | | | Purchased from
Sigma Aldrich | | Diabetic neuropathy
(male Swiss albino
mice) | Neuroprotective activities: ↑ histopathological and ↓pathological changes in the spinal cord of streptozotocin-treated diabetic mice ↓ Oxidative stress levels in streptozotocin-treated diabetic mice | Macroautophagy
and signalling
pathway | [67] | | | | | | Autophagic enhancement: ↑ AMPK activation and ↓ mTOR activation in the sciatic nerves of streptozotocin-treated diabetic mice ↑ LC3-II/I and Beclin-1 and ↓ p62 protein expression | | | |---------------------------------------|---|----------------------------|---|--|----------------|-------| | Green tea, camellia sinensis (leaves) | Provided by
Shanghai U-sea
Biotech Co., Ltd.,
Shanghai, China. | Epigallocatechin-3-gallate | Neuropathology:
CUMS (Wistar rats) | Neuroprotective activities: ↑ Learning and memory impairment of Wistar mice ↓ Neuronal damage and CUMS-induced apoptotic cells in CA1 region of hippocampus Autophagic enhancement: ↑ LC3-II and ↓p62 autophagic markers in CA1 region of hippocampus | Macroautophagy | [15] | | | N/A, China | | SH-SY5Y
neuroblastoma cell) | Neuroprotective activities: ↑ Cell viability against PrP-induced neurotoxicity ↓ Bax, cytochrome c, and activated caspase-3 levels for apoptosis Autophagic enhancement: ↑ LC3-II and Sirt1, while ↓ p62 autophagic markers | Macroautophagy | [16] | | | N/A, US | | Neuropathophysiology
neuroinflammation
(BV-2 cells) | Neuroprotective activities: ↑ Viability of LPS-treated BV-2 cells ↓ NO production and neuroinflammatory proteins in LPS- treated BV-2 cells Autophagic enhancement: | inflammatory | [109] | | | | | | \uparrow gm-csf while \downarrow mif, and ccl-2 gene expression | | | |--|---|-----------------|---
--|---|-------| | | Purchased from
Sigma Aldrich,
China | Catechin | Ischemic stroke
(mouse BV-2
microglial cell) | | Macroautophagy
and signalling
pathway | [17] | | Cereals, fruits and vegetables | Purchased from
Sigma Aldrich | p-Coumaric acid | Neuroblastoma and solid extracranial cancer (mouse N2a neuroblastoma) | Neuroprotective activities: † Cytotoxicity and ROS production ↓ GSH and MMP levels † Cytochrome c, caspase-8 and p53 apoptotic markers Autophagic enhancement: † Autophagic vacuoles, LC-3II/I ratio autophagic markers | Macroautophagy | [110] | | Chinese skullcap,
Scutellaria
baicalensis (root) | Purchased from HD
Biosciences Co.,
Ltd., Shanghai,
China | Wogonin | primary mouse cortical
astrocyte) | Neuroprotective activities: ↑ Aβ clearance in both transgenic SH-SY5Y-APP/BACE and primary mouse cortical astrocyte ↑ GSK3β activation for tau dephosphorylation in transgenic SH-SY5Y cell Autophagic enhancement: ↑ LC3-II/I ratio autophagic marker, ↓ mTOR, P70S6K and ULK1 activation in both cell lines | Macroautophagy
and signalling
pathway | [18] | | | N/A | Baicalein | Parkinson's disease
(human SH-SY5Y | Neuroprotective activities: | Macroautophagy | [19] | | | | | neuroblastoma cell and
C57BL/6J mice) | ↓ PD-related behavioural deficit in rotenone-treated mice ↑ Dopamine content, ↓ caspase-3 activation and ↑ mitochondrial integrity in both rotenone-treated SH-SY5Y cell and striatal tissue of mice Autophagic enhancement: ↑ LC3-II/I ratio autophagic markers in both rotenone-treated SH-SY5Y cell and striatal tissue of mice | | | |--------------------------------|---|-----------------------|--|--|----------------------------|------| | | Purchased from
Sigma Aldrich | | Spinal cord Injury
(C57BL/6 mice) | Neuroprotective activities: ↑ Viability and functionality of motor neurons in post-SCI mice ↓ Caspase-3 and -9 activation, and Bax/Bcl-2 ratio apoptotic markers ↓ Number of TUNEL stained-apoptotic cells Autophagic enhancement: ↑ activation of PI3K, LC3-II/I ratio and ↓p62 autophagic markers | Macroautophagy | [20] | | Dong quai,
Angella sinensis | Isolated from
chloroform extract,
China | n-butylidenephthalide | Amyotrophic lateral sclerosis (NSC34 mouse-mouse neuroblastoma-spinal cord hybrid cell line and Tg mice) | Neuroprotective activities: ↓ LC3-II autophagic, caspase-3 apoptotic marker, and ↑ mitochondrial integrity in transformed NSC34 ^{G93A-SOD1} cell ↑ Survival rate of transgenic Tg (SOD1 ^{G93A}) mice ↓ Loss of motor neuron while ↑ motor neuron performance in transgenic Tg (SOD1 ^{G93A}) mice | Suppress
Macroautophagy | [45] | | | | | | ↓ LC-3-II autophagic marker
expression in the spinal cord tissues
of transgenic Tg (SOD1 ^{G93A}) mice | | | |---|--|-----------------------------|--|--|---|-------| | Ampelopsis
grossedentata | Purchased from
Zelang Medical
Technological Co.
Ltd., Nanjing,
China | Ampelopsin/dihyfromyricetin | Alzheimer's disease
(Male Sprague Dawley
rats) | Neuroprotective activities: ↑ Spatial learning and memory impairment in D-galactose induced brain aging rat ↓ Hippocampal neuron damage of D-galactose induced brain aging rat ↓ p53/p21 and miR-34a expressions in hippocampus tissue ↓ Caspase-3 activation and ↑ Bcl-2 anti-apoptotic marker in hippocampus tissue Autophagic enhancement: ↑ SIRT1, Atg7, LC3-II/I ratio and ↓ p62 autophagic markers | Macroautophagy | [111] | | Rosemary,
Rosemarinus
officinalis | Purchased from
Abcam, China | Carnosic acid | Alzheimer's disease
(human SH-SY5Y
neuroblastoma cell) | Neuroprotective activities: † Viability of Aβ ₂₅₋₃₅ treated SH-SY5Y cells † Clearance of Aβ ₂₅₋₃₅ Autophagic enhancement: † LC3-II/I ratio autophagic marker and AMPK activation | Macroautophagy
and signalling
pathway | [70] | | | Purchased from
Sigma Aldrich | | Neuronal starvation
(human SH-SY5Y
neuroblastoma cell | Neuroprotective activities: † Viability against nutrient starvation in SH-SY5Y cells † Akt and Erk1/2 cell survival proteins, and FoxO3a prosurvival factor activation Autophagic enhancement: | Macroautophagy
and signalling
pathway | [112] | | | | | | ↑ Autophagic vacuoles and LC3-II protein expression | | | |--------------------------|--|---------------------|---|--|---|-------| | Dioscorea
nipponica | Purchased from
Nanjing Zelang
Medical
Technology Co.,
Ltd., Nanjing,
China | Diosgenin | DU145 prostate cancer cell line) | ↓ Viability of DU145 cells and ↑ | Macroautophagy
and signalling
pathway | [71] | | Polyalthia
longifolia | Isolated and provided by Dr. Yi Chen Chia from Department of Food Technology, Tajen University, Pingtung, Taiwan | 13-dien-16,15-olide | N18 neuroblastoma
and rat C6 glioma
cells) | Antiproliferative activities: ↑ Cytotoxicity, and ROS and NO production in both cell lines ↓ GSH, SOD, GST, GPx antioxidant enzymatic activities in both cell lines ↑ p38 MAPK, ERK activation in N18 cells Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic markers | Macroautophagy | [113] | | Gastrodia elata | Purchased from
Shanghai Pureone
Biotechnology,
Shanghai, China | Gastrodin | abnormality (mice
C57BL/6 primary
astrocytes) | Neuroprotective activities: † Viability of lipopolysaccharidestreated primary astrocytes ↓ BAX/Bcl-2 ratio apoptotic markers † Glutamine synthase enzymatic activity Autophagic enhancement: † LC3-II/I ratio, p62, Beclin-1 autophagic markers | Macroautophagy | [114] | | | | | | ↓ p38 activation | | | |---|---|----------|---|--|---|-------| | Houpo, <i>Magnolia</i>
officinalis Rehd. et
Wilsm, Taiwan | Purchased from
Sigma Aldrich | Honokiol | Neuro2A and NB41A3 neuroblastoma cells) | | Macroautophagy
and signalling
pathway | [115] | | Rabdosia
rubescens | Purchased from
Chengdu Must Bio-
Technology Co.,
Ltd. Sichuan, China | Oridonin | SH-SY5Y and SK-N-MC neuroblastoma cells, and female athymic (nu/nu) mice) | Antiproliferative activities: ↑ Cell death and number of apoptotic cells in Oridonin and NVPBEZ235 co-treated cells ↑ Caspase-3 and PARP activation in both cell lines ↓ Tumour tissue proliferation of athymic mice Autophagic enhancement: ↑ LC3-II and p62 autophagic marker in both cell lines | Macroautophagy | [116] | | Dalbergia
odorifera
(heartwoods) | Isolated from ethanol extract of D. odorifera | Cearoin | SH-SY5Y
neuroblastoma cells) | Antiproliferative activities: ↓ Viability, ↑ ROS and NO production of SH-SY5Y cells ↑ ERK1/2 and PARP activation | Macroautophagy | [117] | | | | | | ↑ α-Spectrin and BAX pro-apoptotic markers, and ↓ Bcl-2 anti-apoptotic marker Autophagic enhancement: ↑ LC3II/I ratio autophagic marker | | | |---|---------------------------------|-------------------------------------|--|--|----------------|-------| | Olive, Argan and
hydrogenated food
oils | N/A | Oleic acid,
docosahexaenoic acid | Neuropathology:
oxiapoptophagy
(mouse BV-2
microglial cell) | Neuroprotective activities: ↓ Oxidative stress in 7KC-treated
BV-2 cell ↑ Mitochondrial and plasma membrane integrity ↑ Number of apoptotic cells Autophagic enhancement: ↑ LC3II/I ratio autophagic marker | Macroautophagy | [118] | | Radix puerariae
(root) | N/A | Puerarin | Cerebral Ischemia
(Male Sprague Dawley
rats) | Neuroprotective activities: ↓ Neurological deficit score, cerebral infarct volume, brain water content in the MCAO rats Autophagic enhancement: ↓ LC3-II/I ratio autophagic marker in protein and mRNA level | | [119] | | | Purchased from
Sigma Aldrich | | Neurotoxicity study:
Cadmium (male
Sprague Dawley rats
and primary cortical
neurons) | Neuroprotective activities: ↑ Viability and ↓ neuronal injury of Cd-treated primary cells and rats Autophagic activation and modulation: ↓ LC3II and p62 protein expression in both <i>in vitro</i> and <i>in vivo</i> experiment ↓ Number of autophagosome in both <i>in vitro</i> and <i>in vivo</i> experiment | Macroautophagy | [120] | | | | | | † Autophagosome-lysosome formation <i>in vitro</i> and <i>in vivo</i> experiment | | | |-----------------------------------|---|----------------|---|--|---|-------| | Tripterygium
wilfordii Hook.f. | N/A | Triptolide | Parkinson's disease
(mouse MN9D
dopaminergic neuronal
and Sprague-Dawley
rats) | Neuroprotective activities: ↑ Viability of A53T-transfected MN9D cells ↑ Clearance of α-Synuclein in A53T- transfected MN9D cells Autophagic enhancement: ↓ p62 autophagic marker | Macroautophagy | [121] | | Artocarpus
lakoocha | Purchased from
Sigma Aldrich,
Korea | Oxyresveratrol | Neuroblastoma (human
SH-SY5Y and rat
B103 neuroblastoma,
Rat-2 and mouse NIH
3T3 fibroblast and
human embryonic
kidney HEK293 cell) | Antiproliferative activities: † Cell death in neuroblastoma cells, but not other cell lines † Apoptosis activation <i>via</i> loss of MMP in neuroblastoma † Caspase-3 and -9 activation Autophagic enhancement: † LC3-II/I ratio, Beclin-1, Atg5 and Atg7 autophagic markers in neuroblastoma cells ‡ mTOR, PI3K, and AKT activation, while † p38 MAPK pro-apoptotic and autophagic marker | Macroautophagy
and signalling
pathway | [122] | | | | | Autophagy study (Primary cortical neuron and astrocyte cells) | Autophagic enhancement: † LC3 puncta and LC3-II protein expression in both chloroquine- treated cortical neuron and astrocytes ‡ p62 protein expressions in both chloroquine-treated cortical neuron and astrocytes | Macroautophagy
and signalling
pathway | [123] | | | | | | ↑ AMPK activation and ↓ mTOR activation ↑ ULK1 and LAMP1 protein expressions in mouse cortical astrocytes | | | |-----|---------------------------------|-------------|---------------------------------|---|---|-------| | N/A | Purchased from
Sigma Aldrich | Lipoic acid | | Neuroprotective activities: ↑ Viability and number of apoptotic cells in acrylamide-treated SH-SY5Y cells ↑ Cytochrome c release and caspase-3 activation ↓ Akt activation, ↑ MMP level, ↑ AMPK and GSK3β activation ↑ ERK activation, while ↑ JNK and p38 activation ↓ Activation p65 and IkB inflammatory markers, and translocation of NF-kB Autophagic enhancement: ↑ ND1, COX2, Sirt1 and PGC-1α mitophagy markers ↑ LC3-II/I ratio and Beclin-1 autophagic markers | Macroautophagy
and signalling
pathway | [124] | | N/A | N/A | Polydatin | SK-N-SH
neuroblastoma cells) | Neuroprotective activities: ↑ Mitochondrial integrity and ↓ Aβ- induced oxidative damage ↓ Number of apoptotic cells in Aβ- treated cells ↓ Caspase-3 and -9 activation, Cytochrome c release, PARP activation, and ↑ BAX apoptotic markers | Macroautophagy
and signalling
pathway | [125] | | | | | | Autophagic enhancement: ↑ LC3-II/I ratio and Beclin-1 autophagic markers ↑ AMPK activation and ↓ mTOR activation | | | |-----|--|----------|---|--|----------------|-------| | | Purchased from Shanghai Yuaye Biotechnology Company, Shanghai, China, and dissolved in distilled water | | Parkinson's disease (SH-SY5Y cells and Parkin-null flies) | Neuroprotective activities: ↑ Viability of rotenone-treated SH-SY5Y cells ↓ Intracellular oxidative stress and mitochondrial dysfunction ↑ Dopaminergic mitochondrial dysfunction and phenotypes of parkin-null flies Autophagic suppression: ↓ Number of autophagosomes and ↑ autophagolysosomes ↑ LC3-II and Atg5 autophagic markers and ↓ p62 expression level ↓ Activation of mTOR and Ulk1/2 protein expressions ↓ PGC1β protein expression | Macroautophagy | [126] | | N/A | Purchased from
Sigma Aldrich | β-amyrin | Parkinson's disease
(Caenorhabditis
elegans) | Neuroprotective activities: ↑ Viability of juglone-induced oxidative stress in <i>C. elegans</i> ↓ intracellular ROS level in wild-type N2 <i>C. elegans</i> ↑ Viability of neuronal cell in 6-OHDA treated transgenic BZ555 <i>C. elegans</i> ↓ α-synuclein aggregation in transgenic NL5901 <i>C. elegans</i> Autophagic enhancement: | Mitoautophagy | [127] | ## Progress in Microbes and Molecular Biology (H) | | | | | ↑ LGG-1 autophagic marker in transgenic NL5901 <i>C. elegans</i> | | | |---|-----|--------------|----------------------------|--|---|-------| | Rhizoma coptidis, Radix Scutellaria Georgi, Labiatae, Cortex Phellodendri, and Fructus Gardeniae (Chinese medicine Huang-Lian-Jie-Du-Decoction) | | ľ | (male Sprague Dawley rats) | Neuroprotective activities: ↑ Viability, and ↓ brain infarct volume and pathological changes in MCAO rats ↑ Mn-SOD, Cu/Zn-SOD, CAT and GPx antioxidant enzyme activation in brain tissue of MCAO rats ↑ Expressions of peroxidases and NQO-1 antioxidant markers ↓ iNOS, COX-2 proinflammatory protein markers ↓ TNF-α, IL-1β, IL-2 and IL-6 proinflammatory markers at mRNA level ↑ NF-κB and p65 activation Autophagic enhancement: ↑ LC3-II/I ratio and Beclin-1, and ↓ p62 autophagic markers ↓ mTOR activation, and ↑ expression of Atg-3, -5, -7, -12, and phosphorylated PI3K | Macroautophagy
and signalling
pathway | [128] | | Erigerin
breviscapus (Vant.)
Hand-Mazz | N/A | Breviscapine | (male Sprague Dawley rats) | Neuroprotective activities: \(\) Neurological deficit score, infarct volume, and cerebral edema in MCAO rats Autophagic suppression: \(\) LC3-II/I ratio autophagic marker in both mRNA and protein level in both neurons and astrocytes of penumbra tissues of MCAO rats | | [129] | | Andrographis
paniculata, China | | Alzheimer's disease
(rat PC-12
pheochromocytoma
cells) | Neuroprotective activities: ↑ Viability of Aβ ₁₋₄₂ -treated PC-12 cells ↓ Aβ ₂₅₋₃₅ -induced cytotoxicity, intracellular malonaldehyde and nitric oxide levels in PC-12 cells ↓ Intracellular ROS and MMP levels ↓ Cytochrome <i>c</i> release, and ↑ BAX pro-apoptotic protein level ↓ Tau protein phosphorylation ↑ Nrf2 and ↓ p21 protein expression levels Autophagic enhancement: ↑ Atg5, Atg7, and AMBRA1 autophagic markers in mRNA level ↑ Beclin-1, LC3s and reduced p62 autophagic markers in mRNA and protein levels | Macroautophagy | [130] | |-----------------------------------|-----|---
---|----------------|-------| | N/A, China | N/A | Neuropathology:
Oxidative stress (rat
primary spinal cord
neurons) | Neuroprotective activities: ↓ Intracellular ROS level in H ₂ O ₂ - treated cells ↓ Number of apoptotic cells in H ₂ O ₂ - treated cells Autophagic enhancement: ↑ LC3-II/I ratio and Beclin-1, while ↓ p62 autophagic markers in pterostilbene-treated cells ↑ LC-3-II/I ratio autophagic marker in H ₂ O ₂ -treated cells | Macroautophagy | [131] | ## Progress in Microbes and Molecular Biology (H) | N/A | N/A, China | Quercetin | Autophagic-related pathogenicity (human ARPE-19 retinal pigment epithelial cell) | ↑ TFEB-mediated gene transcription | pathway | [132] | |-----|--|-----------|--|---|---------------------------|-------| | | Purchased from
Sigma Aldrich,
France | | Oxiapoptophagy (N2a cells) | Neuroprotective activities: ↑ Viability of 7KC-treated N2a cells ↓ Plasma membrane damage in 7KC- treated N2a cells ↓ Intracellular ROS and ↑ antioxidant enzymatic activities ↑ MMP level and mitochondrial function ↓ Activated caspase-3 and PARP pro- apoptotic markers Autophagic suppression: ↓ LC3-II/I ratio autophagic markers | | [37] | | | Purchased from
Sigma Aldrich,
India | | Neurotoxicity study:
Copper (SH-SY5Y
cells) | - | Macroautophagy
and CMA | [60] | | | | | | † Hsc70, Hsc90, and LAMP-2A protein expresions | | | |------------------------------|---|--|--|---|---|------------| | N/A, China | Purchased from
China Standard
Material Center,
Beijing, China. | Isoflavone | Neurotoxicity study
(SH-SY5Y
neuroblastoma cell) | Neuroprotective activities: ↑ Viability in Atrazine-treated SH-SY5Y cells ↑ Expression of tyrosine hydroxylase level of dopamine secretion ↓ α-synuclein accumulation level Autophagic enhancement: ↑ LC3-II/I ratio while ↓ p62 autophagic markers ↑ BEX2 autophagic marker | Macroautophagy | [119, 133] | | N/A, India | Purchased from
Sigma Aldrich | Geraniol | Parkinson's disease
(human SK-N-SH
neuroblastoma cell) | Neuroprotective activities: ↑ Viability of rotenone-induced toxicity in SK-N-SH cells ↓ Intracellular ROS and ↑ MMP levels in SK-N-SH cells ↑ Mitochondrial integrity via ↓ NO while ↑ ETC I and ATP ↑ TBARS, ↓ GSH and SODs antioxidant enzymatic activities ↓ Number of apoptotic cells Autophagic markers: ↑ Atg5, Atg7 and Atg12 autophagic markers while ↓ mTOR activation ↑ LC3-II/I ratio autophagic markers and clearance of α-synuclein | Macroautophagy
and signalling
pathway | [134] | | Gentiana dinarica
(roots) | Collected from Mt.
Tara, western
Serbia, Marcerated
using Methanol | Xanthones
(norswertianin and
noswertianin-1-O-
primeveroside) | Brain tumours (human U251 glioma cells) | Antiproliferative activities: ↓ Viability of U251 cells ↑ Intracellular ROS stress Autophagic enhancement: | Macroautophagy
and signalling
pathway | [135] | | | (1:2.4) (m/v) for 48
h and concentrated
using rotary
evaporator | | | ↑ Number of autophagic vacuoles
↑ LC3-II/I ratio autophagic marker
and ↓ p62 autophagy target
↓ p-mTOR, S6K, PRAS40, ULK1
and ERK activation | | | |-------------------------------------|---|--------------------------------------|---|--|----------------|-------| | Trillium
tschonoskii (roots) | Purchased from
Bellancom (14144-
06-0) | Diosgenin glucoside
(TTM saponin) | Neurotoxicity study
(Sprague-Daley rats) | Neuroprotective activities: ↑ Memory and learning on D- galactose treated rats ↓ Hippocampal neurons damage from D-galactose treated rats ↓ Caspase-3 and BAX apoptotic markers and ↑ Bcl-2 anti-apoptotic marker at protein level Autophagic enhancement: ↑ Rheb and ↓ mTORC1 activation ↑ LC3-II/I ratio and Beclin-1 autophagic markers, while ↓ p62 protein expression | Macroautophagy | [136] | | Aralia elata (Miq.)
Seem. (buds) | Collected from
Liaoning Province,
China. The buds
were extracted
using 70% ethanol
with reflux, size
excluded,
evaporated, and
purified using three
rounds of HPLC | Eclalbasaponin I | Neuropathology:
Oxidative stress (SH-
SY5Y cells) | Neuroprotective activities: ↑ Viability of H ₂ O ₂ -treated SH-SY5Y cells ↓ Number of apoptotic cells ↓ Caspase-3 activation and BAX pro-apoptotic marker, while ↑ Bcl-2 anti-apoptotic marker at protein level ↑ MMP level in H ₂ O ₂ -treated SH-SY5Y cells ↓ Intracellular ROS level, ↑ Nrf2, p-Nrf2 and HO-1 antioxidant proteins, and ↑ SOD and GSH-Px antioxidant enzyme activities Autophagic enhancement: | Macroautophagy | [137] | # Progress in Wierobes and Wolcoular Biology (H) | | | | | ↑ Number of MDC-stained autophagic cells ↑ LC3-II/I ratio and ↓ p62 autophagic markers | | | |--------------------------------|---|-----|--|---|---|-------| | Lycium babarum polysaccharides | Purchased from Beijing Solarbio Science & Technology Co. Ltd, Beijing, China | N/A | Stroke (Primary
hippocampal neuron
from C57BL/6 mice) | Neuroprotective activities: ↑ Viability and ↓ LDH release from oxygen glucose deprivation/reoxygenation-induced neuron ↓ Intracellular ROS level ↓ Caspase-3 activation and BAX/Bcl-2 ratio pro-apoptotic marker ↓ Number of apoptotic cells Autophagic suppression: ↓ LC3-II/I ratio and Beclin-1 autophagic markers, ↑p62 protein expression ↑ activation of Akt, mTOR protein expression | Suppress
Macroautophagy
and suppress
signalling
pathway | [48] | | | Aqueous extract of dried fruits was prepared sequential decolouration and delipidation in alcohol, and boiling in distilled water, lastly, followed by freeze-dried into powder | | Retinal ganglion
degeneration (female
Sprague Dawley rats) | Neuroprotective activities: ↓ Degeneration of retinal ganglion cells in the nasal retinas of post-PONT rats ↑ Microglia/macrophages polarization Autophagic enhancement: ↑ CD68 marker for microglia/macrophages activation ↑ LC3-II autophagic marker | Macroautophagy | [138] | | | Yuanye
Biotechnology Co.
Ltd. Shanghaim
China. | | Parkinson's disease
(Sprague Dawley
juvenile rats) | Neuroprotective activities: ↓ Behavioural and locomotor dysfunction in 2,4-dichlorophenoxyacetic acid treated PD rats ↑ Viability of neuronal cells in hippocampus ↑ Microglial activation ↓ Oxidative stress and ↑ antioxidant enzyme activities in rat sera Autophagic enhancement: ↑ LC3-II/I and Beclin-1 autophagic markers mRNA expressions | Macroautophagy | [139] | |---------------------------|---|--------------|--
---|----------------------------|-------| | Cistanche tubulosa (stem) | Purchased from
Sigma Aldrich | Echinacoside | Parkinson's disease
(PC12 cells and male
C57BL/6 J mice) | Neuroprotective activities: ↓ Behavioural impairment and loss of nigral neurons in MPTP treated mice ↑ Clearance of α-synuclein in the brain of MPTP treated mice ↑ Viability of MPP+ treated PC12 cells Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic markers in neuronal cell line and brain tissue ↑ Activation of PI3K and ↓ p62 expression level both in neuronal cell line and brain tissue ↑ Sirt1 and FoxO1 protein expression in PC-12 cells | Macroautophagy | [140] | | 1 | Provided by
Nanjing Zelang | | Aging associated pathology (male | Neuroprotective activities: | Suppress
Macroautophagy | [46] | | | Medical
Technology Co.,
Ltd, Nanjing, China | SAMP8 and SAMR1 mice) | † Memory and learning of SAMP8 and SAMR1 mice ↓ Brain aging <i>via</i> reduction of SA-β-gal positive brain tissue of SAMP8 mice Autophagic suppression: ↓ Number of autophagosomes in the hippocampal of SAMP8 mice ↓ LC3-II autophagic marker and p62 protein expression in the hippocampal and cortex of SAMP8 mice | | | |---------------------------|---|--|---|---|-------| | | Purchased by
Nanjing Zelang
Medical
Technology Co.,
Ltd, Nanjing, China | Parkinson's disease
(PC12 cells and
Sprague Dawley rats) | ↑ Viability of dopamine neurons in | Macroautophagy
and signalling
pathway | [141] | | Epimedium
grandiflorum | N/A | Cerebral ischemia
(male Sprague-Dawley
rats) | Neuroprotective activities: ↓ Cerebral injury in post MCAO rats ↓ Neuronal injury in oxygen-glucose deprivation and reoxygenation treated primary rat cortical neuronal | Suppress
Macroautophagy | [47] | | | | | | cells from newborn Sprague Dawley rats Autophagic suppression: ↓ LC3-II/I ratio, Beclin-1, Atg5, and Atg7 autophagic markers in the penumbra tissue and primary rat cortinal neuronal cells ↑ cGMP level, PKG and PDE5 activities ↑ SQSTM1 protein expression level ↑ Activation of ser9-GSK-3β, while ↓ activation of tyr216-GSK-3β | | | |-------------------------------------|--|-----------|---|---|---|-------| | Dioclea violacea
(seeds), Brazil | Purified using size-
exclusion affinity
chromatography | Lectin | Brain tumour (U87
human glioma cells) | ↓ Viability of both U87 wild-type | Macroautophagy
and signalling
pathway | [142] | | N/A, Italy | Purchased from
Sigma Aldrich | Trehalose | Motoneuron
degeneration (NSC34
and iPSCs cells) | Neuroprotective activities: ↑ Nuclear translocation of transcription factor EB in mutant androgen receptor transgenic NSC34 cells | Macroautophagy | [143] | | | | | | ↑ Clearance of misfolded proteins in transgenic NSC34 cells and iPSCs derived from SBMA patients that differentiated into motoneuronal-like cells Autophagic enhancement: ↑ Expression of genes coding for BecN1, SQSTM1/p62, and MAP1LC3B autophagic markers | | | |--------------------------|---|----------------|--|--|---|-------| | Ginkgo biloba | Purchased from
Calbiochem | Ginkgolic acid | Parkinson's disease
(SH-SY5Y and
embryonic cortical
neurons from E18
Wistar Rattus
Norvergicus embryos) | Neuroprotective activities: ↓ Clearance of α-synuclein in KC1- treated SH-SY5Y cell Autophagic enhancement: ↑ LC3-II autophagic expression level and number of autophagosomes | Macroautophagy | [144] | | Stephania
cepharantha | Provided by Guangzhou Jinan Biomedicine Research and Development Center, Guangdong, China | Cepharanthine | Spinal and bulbar
muscular atrophy
(NSC34 cells) | Neuroprotective activities: ↑ Viability of mAR51Q transgenic SBMA cells ↑ Clearance of both cytoplasmic and nuclear mAR51Q mutant protein ↓ Activation of caspase-3 proapoptotic marker and number of apoptotic cells ↓ Phosphorylation of AMPKα Autophagic enhancement: ↑ LC3-II/I ratio and ↓ SQSTM1/p62 autophagic markers ↓ activation of mTOR expression ↑ Number of autophagolysosomal fusion | Macroautophagy
and signalling
pathway | [145] | | Radix sophorae | Obtained from | Matrine | Multiple sclerosis | Neuroprotective activities: | Macroautophagy | [146] | |----------------------------|--|------------|-----------------------------|--|----------------|-------| | flavescentis | Tianqing Phar. Co.,
Chiatai, Jiangsu
China. | | (female Wistar rat) | ↓ Clinical severity of autoimmune encephalomyelitis rat <i>via</i> ↓ weight loss, and CNS inflammation and demyelination ↓ Apoptosis in stressed oligodendrocytes and caspase-3 activation ↓ Microglia activation, IL-1β inflammatory marker, and HSPB5 multiple sclerosis marker ↓ Cytochrome <i>C</i> protein expression in stressed oligodendrocytes of brain and spinal cord ↓ ROS production in the CNS of autoimmune encephalomyelitis rat Autophagic enhancement: ↑ Mitochondrial LC3 and Beclin-1 in stressed oligodendrocytes brain and spinal cord | | | | Hypericum
perforatum L. | Obtained from
Shanghai Yuanye
Biotechnology. Co.,
Ltd, Shanghai,
China | Hyperoside | Epilepsy (male ICR
mice) | Neuroprotective activities: ↑ Number of NeuN immunoreactive cells in the brain tissues of kainic acid-treated mice ↓ Epileptic behaviour scores in kainic acid-treated mice ↑ SOD1 and SOD2 antioxidant enzymatic activities ↑ Activation of PI3K, Akt, MAPK protein expressions ↓ Microglial activation and Iba-1 expression level Autophagic enhancement: | Macroautophagy | [147] | | | | | | ↑ Number of autophagosomes in the hippocampal tissue ↑ LC3-II/I ratio and Beclin-1 autophagic markers | | | |--------------------------------|---|--------------------|---|--|----------------------------|-------| | Panax notoginseng | Purchased from
Qidan Co. Ltd.
Yunnan, China | Stem-leaf saponins | Sleep deprivation
(male C57BL/6 mice) | Neuroprotective activities: ↑ Memory and learning functions of sleep deprived mice ↓ Neuronal injury in hippocampus of sleep deprived mice ↓ Bax/Bcl-2 ratio and activated caspase-3 apoptotic markers Autophagic suppression: ↓ Number of autophagosomes ↓ LC3-II, Beclin-1, p62 autophagic markers protein expression ↑ Activation of PI3K, Akt, mTOR at protein level | Suppress
Macroautophagy | [148] | | Buckwheat, teas,
and apples | Purchased from
Sigma Aldrich | Rutin | Huntington's disease (C. elegans) | Neuroprotective activities: ↓ Polyglutamine deposition in both AM141 and HA759 mutant <i>C. elegans</i> ↑ Lifespans of both AM141 and HA759 mutant <i>C. elegans</i> ↓ Intracellular ROS in both AM141 and HA759 mutant <i>C. elegans</i> ↑ Viability of juglone-induced oxidative stress in all strains | Macroautophagy | [149] | | Ericaceae species | Obtained from
Shanghai Yuanye
Biotechnology
company, Shanghai, | α-Arbutin | Parkinson's
disease
(SH-SY5Y cells,
drosophila) | Neuroprotective activities: † Viability in rotenone treated SH- SY5Y cells | Signalling
pathway | [150] | ## Progress in Wierobes and Wolcoular Biology (H) | China, and dissolved in distilled water | | | ↓ PARP pro-apoptotic protein activation ↓ Intracellular ROS level and ↑ GSH and SOD antioxidant enzymatic activities ↑ MMP level and mitochondrial integrity ↓ Pathological phenotypes in PD drosophila Autophagic enhancement: ↓ Activation of AMPK and p62 protein expression levels | | | |--|-------------|---|--|----------------|-------| | Rhodolia rosea L. Purchased from MedChem Express | Salidroside | Cerebral Ischemia
(male C57BL/6 mice
and primary spinal
neurons) | Neuroprotective activities: ↓ Loss of motor neurons and motor function in the spinal cord of post SCIRI mice ↓ BAX/Bcl-2 ratio, activated caspase-3 and caspase-9 proapoptotic proteins in the spinal cord of post SCIRI mice and oxygenglucose deprivation/reperfusion in primary spinal neurons from fetal mice ↓ Oxidative stress level in spinal cord tissue and primary spinal neurons ↑ GSH and SOD antioxidant enzymatic activities in spinal cord tissue ↑ MMP level and mitochondrial function Autophagic enhancement: | Macroautophagy | [151] | | | | | | ↑ Number of autophagosomes and autophagosome-lysosome fusion in the mitochondria of <i>in vitro</i> and <i>in vivo</i> experiments ↑ LC3-II autophagic marker, and ↓ p62 and Tomm20 protein expressions in spinal cord tissue and primary spinal neurons ↑ Phosphorylation of Parkin and PINK1 protein expression level | | | |-----------------|--|-------------|--|--|----------------------------|-------| | Cannabis sativa | Cultivated and collected at CREA-CIN, Rovigo, Italy, and purified under standardized and legalised method by the Ministry of Health of Italy | Cannabidiol | Parkinson's disease
(Retinoic acid-
differentiaed SH-SY5Y
cells) | Neuroprotective activities: ↑ Viability of MPP+ induced cell Zdeath in SH-SY5Y cell ↓ BAX, activated caspase-3 and PARP-1 pro-apoptotic protein levels ↑ Tyrosine hydroxylase dopaminergic enzyme expression level ↑ Activation of ERK and Akt cell survival protein levels Autophagic suppression: ↑ Activation of mTOR protein level ↓ LC3-II autophagic markers | Suppress
Macroautophagy | [152] | | | N/A | | Autophagic study (<i>C. elegans</i> , SH-SY5Y cells, and primary hippocampal cells) | Autophagic enhancement: ↑ Number of autophagosomes and autophagosome-lysosome formation in aging neurons of <i>C. elegans</i> ↑ Lifespan and neuronal morphology in aging <i>C. elegans</i> with presence of bec-1, vps-34, and sqt-1 genes ↑ Anti-aging and neuroprotective effects via SIRT1 and sir-2.1 | Macroautophagy | [153] | | | | | | autophagic marker in both <i>in vitro</i> and <i>in vivo</i> experiments | | | |-----------|---|--------------------|---|---|---|-------| | | Purchased from
Biopurify,
Chengdu, China. | | Alzheimer's disease
(APP/PS1 mice and
C57B6/J mice) | Neuroprotective activities: ↑ Aβ clearance in APP/PS1 mice Autophagic enhancement: ↑ LC3 and Beclin-1 autophagic markers | Macroautophagy | [154] | | Corn silk | Provided by Dr
Maurice Snook,
Russel Research
Center, Athens,
USA | Maysin | Parkinson's disease
(SH-SY5Y cells) | Neuroprotective activities: ↑ Viability of α-synuclein treated SH-SY5Y cells ↓ α-synuclein deposition on cell surface Autophagic enhancement: ↑ Number of autophagsomes ↓ Activation ribosomal protein S6 expression level ↑ LC3-II/I ratio autophagic marker and ↓ p62 protein expression | Macroautophagy | [155] | | N/A | N/A | Soybean isoflavone | Parkinson's disease
(Male Sprague-Dawley
rats) | Neuroprotective activities: ↓ Morphologically neuronal damage in striatal neurons from Atrazine-treated mice ↓ MDA oxidative stress protein level and ↑ GSH antioxidant enzymatic activity ↓ TNF-α and IL-6 neuroinflammatory markers ↑ Tyrosine hydroxylase dopaminergic protein level | Macroautophagy
and signalling
pathway | [156] | | | | | ↓ BAX pro-apoptotic protein and ↑ Bcl-2 anti-apoptotic marker at mRNA level Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic markers, ↓ p62 protein expression ↓ Activation of mTOR protein level | | | |-----|---------------------------------|---|--|----------------|-------| | N/A | N/A | Parkinson's disease
(SH-SY5Y cells) | Neuroprotective activities: ↑ Viability of Atrazine-treated SH-SY5Y cells ↑ MMP level and mitochondrial function Autophagic enhancement: ↑ Number of autophagosomes in mitochondria ↑ Tom20, BNIP3, BEX2, and NIX mitophagy marker and ↑ LC3-II autophagic marker | Macroautophagy | [157] | | N/A | Purchased from
Sigma Aldrich | Alzheimer's disease
(normal human
astrocytes and SH-
SY5Y cells) | Neuroprotective activities: ↑ Viability and secretory activity in astrocyte cells and Aβ-treated differentiated SH-SY5Y cells ↑ Synaptophysin and PSD95 synaptic markers in both cells ↑ MMP level and mitochondrial function Autophagic enhancement: ↑ PINK-1 and PARKIN mitophagy markers ↑ Atg5 and LC3II autophagic markers | Macroautophagy | [158] | | Astragalus
membranaceus | Provided by
Jingzhu
Biotechnology,
Nanjing, China | Astragaloside IV | Parkinson's disease
(MPTP-injected mice
and primary astrocyte
cell from fetal mice) | Neuroprotective activities: ↓ Behavioural deficits and loss of dopaminergic neurons in PD mice ↓ Accumulation of senescent astrocytes in PD mice and primary astrocytes cell ↑ MMP level and mitochondrial function in primary astrocytes cell Autophagic enhancement: ↑ PINK1 and Parkin autophagic marker, while ↓ Tom20 protein level in the mitochondrial of senescent primary astrocyte cells | Mitoautophagy | [159] | |----------------------------|--|------------------|--|--|----------------|-------| | N/A | Purchased from
Sigma Aldrich | Apigenin | Oxiapoptophagy (N2a cells) | Neuroprotective activities: ↑ Viability of 7KC-treated N2a cells ↓ Plasma membrane damage in 7KC-treated N2a cells ↓ Intracellular ROS and ↑ antioxidant enzymatic activities ↑ MMP level and mitochondrial function ↓ Activated caspase-3 and PARP proapoptotic markers Autophagic suppression: ↓ LC3-II/I ratio autophagic markers | | [160] | | N/A | Purchased from
MedChem Express | Dioscin | Alzheimer's disease
(HT-22 cells) | Neuroprotective activities: ↑ Viability of Aβ-treated HT22 cells ↓ Number of apoptotic cells of Aβ-treated HT22 cells ↓ Intracellular ROS level in Aβ-treated HT22 cells Autophagic enhancement: | Macroautophagy | [161] | | | | | | ↑ Number of autophagosomes and formation of autophagosome-lysosome ↑ LC3-II and Beclin-1 autophagic markers | | | |---------------------------------|---|--------------|---|---|---|-------| | Lonicera Japonica | N/A | Galuteolin | rats) | • | Suppress
Macroautophagy | [162] | | and <i>Radix</i>
Rehmanniae | Purchased from
Shanghai Yuen Ye
Biotechnology,
China | | (PC-12 cells, SH-
SY5Y cells, and
drosophila
melanogaster) | ↑ Viability of rotenone-induced | Macroautophagy
and
signalling
pathway | [163] | | Walnuts, cashews, strawberries, | N/A | Ellagic acid | Parkinson's disease
(SH-SY5Y cells) | Neuroprotective activities: | Macroautophagy | [164] | | raspberries and
pomegranates | | | | ↑ Inhibition and disaggregation of α-synuclein amyloid fibrils formation ↑ Viability of α-synuclein-treated SH-SY5Y cells ↓ BAX/Bcl-2 ratio and p53 pro- apoptotic protein ↑ Activation of Akt protein expression Autophagic enhancement: ↑ LC3-II/I ratio and ↓ p62 autophagic markers | | | |--|---------------------------------|---------------|--|--|---|-------| | | Purchased from
Sigma Aldrich | | Parkinson's disease
(C57BL/6 mice) | Neuroprotective activities: ↓ α-synuclein accumulation in the substantia nigra of MPTP-PFF treated mice ↑ Viability of dopaminergic neurons and ↓ apoptosis in substantia nigra of MPTP-PFF treated mice Autophagic enhancement: ↑ LC3 puncta and LC3-II/I, while ↓p62 protein expression in substantia nigra of MPTP-PFF treated mice | | [165] | | Selaginella
tamariscina,
Selaginella
pulvinate, Ginko
biloba, Polugala
sibirica | N/A | Amentoflavone | Alzheimer's disease
(male Kunming mice
and PC12 cells) | Neuroprotective activities: ↑ Memory and cognitive function in Aβ-treated mice ↓ GFAP and Iba-1 astrocytes and microglial activation markers in hippocampus of mice ↓ Numbers of NK and T white blood cells, while ↓ IL-6 and IL-17 neuroinflammatory markers in the blood | Macroautophagy
and signalling
pathway | [166] | | N/A | Provided by Prof.
C. Curti, University
of Pharma, Italy | Flavan-3-ols | Alzheimer's disease
(SH-SY5Y cells) | Neuroprotective activities: ↑ Clearance of extracellular and intracellular Aβ levels Autophagic enhancement: ↑ LC3-II autophagic markers in both wild type and Aβ-transfected SH-SY5Y cells ↑ Number of autophagosomes in both wild type and Aβ-transfected SH-SY5Y cells | Macroautophagy | [167] | |--------------------------|---|--------------|---|--|----------------|-------| | Uncaria
thynchophylla | Purchased from
Aktin Chemicals
Inc, Chengdu,
China. | Corynoxine | Parkinson's disease
(C57BL/6J mice and
SD rats) | Neuroprotective activities: ↑ Motoneuron functions in rotenone treated PD mice and rats ↑ Tyrozine hydroxylase dopaminergic marker level in both PD models ↓ Microglial activation in the brain, and ↓ TNF-α and IL-8 neuroinflammatory markers Autophagic enhancement: | Macroautophagy | [168] | | | | | | ↑ LC3-II autophagic marker and ↓ p62, p-mTOR and p-p70 protein expressions | | | |--------|---------------------------------|------------------|---|---|----------------|-------| | Coffee | Purchased from
Sigma Aldrich | Chlorogenic acid | Neurotoxicity study:
Lead (zebrafish) | Neuroprotective activities: ↓ Toxicity in lead-treated zebrafish ↑ Viability of differentiated neuron in CNS in lead-treated zebrafish ↑ Locomotor function of lead-treated zebrafish ↑ cfox and tuba1b while ↓mbp, ppary, bndf, and dat neurodevelopment gene expression ↓ sod1, sod2, cat, gclm, and gsto2 oxidative stress-related transcriptional genes Autophagic enhancmenet: ↓ pink1, parkin, ambra1a, ulk1b, and ulk2 while ↑ atg5 autophagic transcriptional genes | | [169] | | | N/A | | Parkinson's disease (<i>C. elegans</i>) | Neuroprotective activities: ↑ motility and α-synuclein clearance in PD worm ↑ lipid content and ↓ ROS and MDA level in PD worm ↑ Dopaminergic neurons in 6-OHDA treated worm ↓ α-synuclein deposit and ROS level in 6-OHDA treated worm Autophagic enhancement: ↑ LGG-1GFP puncta in muscle of PD worm | Macroautophagy | [170] | | 1100 | 7 1 7 | |--------------------------|----------------------------| | : | ٠ | | | _ | |) | | | ٠ | n | | - | 3 | | Carrials papilsilci.com/ | irnals hh-niihlisher com/i | | - | 3 | | 200 | ndex phn | | 7,7 | | | ٠, | ے | | | | | | ↑ <i>vps-34, Igg-1, and atg-18</i> mRNA expression levels | | | |--|---|--------------------------------|--|---|----------------|-------| | Fusarium
lateritium SSF2 | Extracted from its plant using methanol solvent | 4,6'-
anhydrooxysporidinone | | Antiproliferative activities: ↓ Viability of MCF-7 cells ↑ Activation of caspase-7, caspase-9, PARP and p53pro-apoptotic proteins Autophagic enhancement: ↑ Formation of LC3 puncta ↑ LC3-II/I ratio autophagic marker | | [87] | | N/A | N/A | | Sevoflurane (Neonatal
P7 mice, and primary
hippocampal cell from | Neuroprotective activities: ↓ activated caspase-3 and PARP proapoptotic proteins in both <i>in vitro</i> and <i>in vivo</i> experiments ↓ NLRP-3 neuroinflammatory protein in both <i>in vitro</i> and <i>in vivo</i> experiments ↑ Cognitive and memory function of sevoflurane-treated mice Autophagic enhancement: ↑ LC3-II/I ratio, Beclin-1 and HMOX1 autophagic markers | | [171] | | Licorice, Radix
Glycyrrhizae
(integral part) | Purchased from
ChemFaces | | Pathophysiology:
Oxidative stress (hBM-
MSCs cells) | Neuroprotective activities: ↑ Viability of H ₂ O ₂ treated hBM- MSCs cells ↓ p53 and activated caspase-3 pro- apoptotic proteins ↓ p53, p16, p21 cell senescent markers ↑ AMPK activation Autophagic enhancement: | Macroautophagy | [172] | | | | | | ↑ LC3II and Beclin-1 autophagic
markers and ↓ SQSTM1 protein
level | | | |---------------------------|---|------------|--|---|---|-------| | Magnolia
officinalis | Purchased from
Sigma Aldrich | | anticancer study (HeLa
and SH-SY5Y cells) | Antiproliferative activities: ↓ Viability of both cancer cell lines ↑ activated caspase-3, -9 and PARP pro-apoptotic markers ↓ MMP level in both cancer cell lines Autophagic enhancement: ↑ LC3-II autophagic marker in both cancer cell lines ↑ PINK1 and Parkin mitophagy markers | Macroautophagy | [86] | | Sophora flavescens | Purchased from Beijing Zhongke quality inspection Biotechnology Co., Ltd., China) | Oxymatrine | | Neuroprotective activities: ↓ Neurological dysfunction, brain infarction and eodema in HIBD-treated rat ↓ Neuron pathological changes and neuronal apoptosis in hippocampus of HIBD-treated rats Autophagic suppression: ↓ Autophagosome level in hippocampus ↓ LC3 and Beclin-1 autophagic marker and ↑ p62 mRNA expression level ↑ Activation of PI3K, Akt, and mTOR protein expression levels | Suppress Macroautophagy and suppress autophagy via signalling pathway | [73] | | Canavalia
brasiliensis | Fine powder was extracted in | | Glioma (C6 glioma cells) | Neuroprotective activities: ↓ Viability and migration of C6 cells | | [173] | | (seeds), USA | 160mmol/L NaCl, | | | | pathway | | | | followed by size exclusion chromatography | | | ↑ Phosphorylation of JNK proteins, p38 MAPK protein levels ↓ Phosphorylation ERK1/2 and Akt protein levels ↑ Number of apoptotic cells and activated caspase-8 pro-apoptotic level Autophagic enhancement: ↑ Number of autophagsomes ↑ LC3-II/I ratio autophagic marker and ↓ activation of mTOR expression | | | |----------------------------|---|-------------|--|---|----------------|-------| | Chickpea | Purchased from
Sigma Aldrich | Biochanin
A | Parkinson's disease
(male C57BL/6 mice) | Neuroprotective activities: ↓ Behavioural dysfunction and ↑ dopaminergic neurons in Ang-II treated mice ↑ Endophilin A2 and activation of FoxO3a Autophagic suppression: ↑ LC3-II/I ratio and Beclin-1 autophagic markers | Macroautophagy | [174] | | Astragalus
membranaceus | N/A | Calycosin | Parkinson's disease
(Drosophila
melangoster) | Neuroprotective activities: † Viability and locomotor function in paraquat-treated flies † Viability of dopaminergic neuron in paraquat-treated flies ‡ Oxidative stress level and proappototic caspases activation in paraquat-treated flies † MMP level and mitochondrial function in paraquat-treated flies Autophagic enhancement: | Macroautophagy | [175] | | | | | | ↑ Beclin-1 and Atg5-Atg12
autophagic proteins, and ↓ p62
protein expression
↑ activation of S6K and 4EBP1
expression level | | | |--|---|-------------|---|--|---|-------| | Originated from pomegranate fruit and walnut, produced by gut bacteria | Purchased from
Selleck Chemicals | Urolithin A | (C57BL/6J mice) | <u>*</u> | Macroautophagy
and signalling
pathway | [176] | | | N/A | | | ↓ Neurological deficits, BBB | Macroautophagy
and signalling
pathway | [177] | | Mespillus
Germanica
(leaves) | Isolated from leaves using 70% ethanol, and isolated from | Kaempferol | Alzheimer's disease
(male Wistar rats) | Neuroprotective activities: ↑ Memory function of Aβ-treated rats | Macroautophagy | [178] | | | two-dimensional
paper
chromatography | | | ↑ NRF-2 mRNA expression in the hippocampus of Aβ-treated rats Autophagic enhancement: ↑ Beclin-1 protein expression | | | |------------------------------|--|---|---|--|---|-------| | Cymbopogo plants | Purchased from
Sigma Aldrich | | Parkinson's disease
(male Wistar rats) | Neuroprotective activities: ↓ Oxidative stress and neuroinflammatory protein levels in rotenone treated rats ↓ Microglial and astrocytes activation via Iba-1 and GFAP reduction ↑ Tyrosine hydroxylase dopaminergic neuron markers ↓ Accumulation of α-synuclein and ↑ pro-apoptotic protein Autophagic suppression: ↓ mTOR activation, LC3 and p62 protein expression | Suppress Macroautophagy and suppress autophagy via signalling pathway | [179] | | Platycodon
grandiflorus | Purchased from
Cayman
ChemicalcCompany | , | Brain tumour
(U87MG,
U373MG cell lines,
and GMB cells) | Antiproliferative activities: ↓ Viability in all cancer cell lines Autophagic suppression: ↑ LC3-II/I and p62 protein expressions ↓ Autophagosome-lysosome formation and lysosomal proteolytic activity | Suppress
Macroautophagy | [89] | | Garcinia
mangostana Linn. | Isolated from pericarp of <i>G. mangostana</i> Linn. | S | Parkinson's disease
(PC12 cells and
C57BL/6J mice) | Neuroprotective activities: ↓ Behavioural dysfunction in rotenone-treated mice | Macroautophagy
and signalling
pathway | [180] | | | | | | ↓ Oxidative stress and ↑ antioxidant enzymatic activities in rotenone-treated mice ↑ Viability of rotenone-treated PC12 cells ↑ Tyrozine hydroxylase dopaminergic level in rotenone-treated mice Autophagic enhancement: ↑ LC3-II/I ratio, Beclin-1, activated-AMPK protein expression in both cortex and striatum in both <i>in vitro</i> and <i>in vivo</i> experiments ↓ Activation of α-synuclein level in both <i>in vitro</i> and <i>in vitro</i> and <i>in vivo</i> experiments | | | |-----------------------|---|-----------|--|--|---|-------| | | Mixture of 0.5 mg
α-mangostin and 10
mg of PEG-PLA to
form
nanopolyphenol | | Neuropathophysiology
protein aggregation
(BV-2 cells. 3x Tg
mice and PD mice) | Neuroprotective activities: ↑ Viability and ↓ microglial activation in both in vitro and in vivo experiments ↑ AMPK activation in both in vitro and in vivo experiments Autophagic enhancement: ↑ Microglial phagocytosis and clearance of misfolded proteins in both in vitro and in vivo experiments ↑ LC3 and ↓ activated-mTOR protein expression in misfolded protein-treated BV-2 cells | Macroautophagy
and signalling
pathway | [181] | | Apple, Malus
genus | Purchased from
Sigma Aldrich | Phlorizin | Aging (C. elegans) | Neuroprotective activities: ↓ Oxidative stress level in environmental stressed worm | Macroautophagy | [182] | | | | | | ↑ Lifespan without affecting fertility in worm ↓ Aged-related motility decline in worm ↓ Worm paralysis in Aβ transgenic worm ↓ Oxidative stress related gene expression level Autophagic enhancement: ↑ Igg-I gene expression level | | | |-----|---------------------------------|-----------------|--|---|----------------|-------| | N/A | Purchased from
Sigma Aldrich | Fisetin | Pathophysiology: Oxidative stress (C. elegans) | Neuroprotective activities: ↑ Radical scavenging activity and ↓ cellular ROS level in worm ↑ Lifespan without affecting fertility in worm ↓ Aged-related motility decline in worm ↓ Worm paralysis in Aβ transgenic worm ↓ Dopaminergic neuronal loss in PD trasngenic worm Autophagic enhancement: ↑ Igg-I gene expression level | Macroautophagy | [183] | | N/A | Purchased from
Adamas | β-Caryophyllene | Cerebral Ischemia
(HT22 cells and male
C57BL/6 mice) | Neuroprotective activities: ↑ Viability and ↓ cell apoptosis in OGD/R-treated HT22 cells ↓ Neuronal injury, infarct volume in the hippocampal tissue of post MCAO mice Autophagic enhancement: | Macroautophagy | [184] | | | | | | ↑ Number of autophagasomes in mitochondrial in both <i>in vitro</i> and <i>in vivo</i> experiments ↑ LC3-II/I ratio and ↓ p62 protein expression in both <i>in vitro</i> and <i>in vivo</i> experiments ↓ Tom20 and ↑ PINK1 and Parkin mitophagy markers in both <i>in vitro</i> and <i>in vivo</i> experiments | | | |---------------------------------|---------------------------------|------------------|--|---|-----------------------------|-------| | N/A | Purchased from
Sigma Aldrich | | Perioperative
neurocognitive
disorders (male
C57BL/6J mice) | Neuroprotective activities: ↑ postoperative cognitive function and CB2R expression in the hippocampus of postoperative neuroinflammation mice ↓ Neuroinflammatory marker levels in postoperative neuroinflammation mice Autophagic enhancement: ↑ LC3-II/I ratio and Beclin-1 while ↓ p62 protein expression in the hippocampus | Macroautophagy | [185] | | Neptunea
arthritica cumingii | N/A | YIAEDAER peptide | Parkinson's disease
(Zebrafish) | Neuroprotective activities: ↓ Locomotor dysfunction in MPTP- treated zebrafish ↑ Dopaminergic neurons and blood vessels formation in MPTP-treated zebrafish ↓ α-synuclein and ROS level Autophagic regulation: ↓ pink1, parkin, beclin-1, ullk2 and ambra1a mRNA transcriptional level | Suppression of
Mitophagy | [186] | | Glycyrrhiza glabra | Purchased from
Sigma Aldrich | Glycyrrhizin | Parkinson's disease
(Zebrafish) | Neuroprotective activities: ↑ Dopaminergic neurons and blood vessels formation in MPTP-treated zebrafish ↓ Apoptotic cells and pro-apoptotic proteins in MPTP-treated zebrafish ↓ Locomotor dysfunction in MPTP-treated zebrafish Autophagic regulation: ↓ α-synuclein and atg5 while ↑ parkin, pink1 mRNA transcriptional level | Suppression of
Mitophagy | [187] | |-----------------------------|--|-----------------|---
--|---|-------| | Penthorum chinese
Pursh. | N/A | Thonningianin A | Parkinson's disease
(zebrafish and SH-
SY5Y cells) | Neuroprotective activities: ↑ MMP level and ↓ cytotoxicity in - OHDA treated SH-SY5Y cells ↑ Antioxidant enzymatic activity in 6-OHDA treated SH-SY5Y cells ↓ PD pathological symptoms in 6- OHDA treated zebrafish ↓ Activation of ferroptosis pathway ↓ Keap1 protein degradation Autophagic enhancement: ↑ LC3-II, Beclin-1 and Atg7 protein expression ↑ p62 protein expression level | Macroautophagy | [188] | | | Isolated from leaf,
stem and flowers
extract through
HPLC | | Alzheimer's disease
(BV-2, primary
microglial, PC12 cells,
and APP/PS1
transgenic mice) | Neuroprotective activities: ↑ Degradation of NLRP3 inflammasome in Aβ-treated BV2 and primary microglial cells, and APP/PS1 transgenic mice | Macroautophagy
and signalling
pathway | [189] | | | | | | ↑ Viability and ↓ cell apoptosis in Aβ-treated PC12 and primary microglial cells Autophagic enhancement: ↑ LC3-II/I ratio and GFP-LC3 puncta in both BV-2 and primary microglial cells ↑ Atg7, activated AMPK and ULK1 protein expressions in BV-2 cells and APP/PS1 transgenic mice ↑ Phosphorylation of Raf, MEK and ERK protein expressions BV-2 cells and APP/PS1 transgenic mice | | | |--|--|--------------------|---------------------------------------|---|----------------|-------| | Mediterranean
sponge, <i>Grantia</i>
compressa | Purified from Eurotium chevalieri MUT 2316 culture | Dihydroauroglaucin | Neuroblastoma (SH-SY5Y cells) | Antiproliferative activities: ↓ Cell migration of SH-SY5Y cells Autophagic activation: ↑ LC3-II/I protein expression | Macroautophagy | [190] | | Artichoke | Purchased | Cynaropicrin | BE(2) and SH-SY5Y | Antiproliferative activities: ↓ Viability and ↑ apoptosis and proapoptotic proteins in both neuroblastoma cells ↓ Neuroblastoma growth of SK-N-BE(2) inoculated on nude mice Autophagic activation: ↑ LC3-II/I, Beclin-1, Atg5 protein expression level ↓ Autophagic flux <i>via</i> reduction of autophagosome-lysosome formation | Macroautophagy | [191] | | Corallodiscus
flabellata B. L. | Isolated from the extract through HPLC | Isonuomioside A | Alzheimer's disease (Aβ treated mice) | Antiproliferative activities: ↑ Cognitive and memory functions of Aβ treated mice | Macroautophagy | [192] | | | | | | ↓ Apoptosis and ROS level in the hippocampus of Aβ treated mice Autophagic activation: ↑ Autophagic vacuoles and ↓ Number of autophagosomes ↑ LC3-II, Beclin-1 and ↓ p62 protein expression in the hippocampus of Aβ treated mice | | | |---------------------------------|-------------------------|-----------|---|---|----------------------------|-------| | Plumbago
zeylanica L., Italy | Provided by
Molnova | Plumbagin | Retinal disorder (D. melanogaster) | Neuroprotective activities: ↓ Visual deficit and ↑ retinal disorganization in high-sucrose diet flies ↓ Pro-apoptotic protein and oxidative stress level in retinal cells Autophagic suppression: ↓ LC3 and p62 protein expression | Suppress
Macroautophagy | [193] | | Citrus and
grapefruit | Purchased from
Gibco | Limonin | Parkinson's disease
(PC12 cells, BV-2 cells
and Sprague Dawley
rats) | Neuroprotective activities: ↑ Motoneuron and ↓ PD pathology in 6-OHDA treated mice ↓ Neuroinflammatory response (microglial activation) in 6-OHDA treated mice ↑ Viability and ↓ pro-apoptotic markers in 6-OHDA treated PC-12 cells ↓ Neuroinflammation in BV-2 cells Autophagic suppression: ↓ LC3, p62 and Beclin-1 protein expression ↓ Atg5, Beclin-1 and ULK1 autophagy-related gene expression | Suppress
Macroautophagy | [194] | | Phytolacca
esculenta | Provided by National Institute ofr Biological Products, Beijing, China. | Esculentoside A | Alzheimer's disease
(triple transgenic AD
mice) | Neuroprotective activities: ↑ Behavioural and spatial memory function in transgenic AD mice ↓ Tau phosphorylation and NFT formation in transgenic AD mice ↑ activation of Akt and GSK3β(Tyr216) protein expressions Autophagic enhancement: ↓ Activation of mTOR protein and p62/SQSTM1 levels in the hippocampus of transgenic AD mice ↑ Cathepsin protein levels in hippocampus of transgenic AD mice | Signalling
pathway | [195] | |-------------------------|---|-----------------|--|--|-----------------------|-------| | Cynanchum
otophyllum | Purchased from
Aktin Chemicals,
Inc | Caudatin | Alzheimer's disease
(SCC134, CHO 7PA2,
HT-22, N2A-tfLC3
cells and triple
transgenic AD mice) | Neuroprotective activities: ↓ Aβ deposit and Tau phosphorylation in Aβ-treated neuronal cell lines ↑ Cognitive and memory functions of transgenic AD mice ↓ Aβ deposit and Tau phosphorylation in transgenic AD mice Autophagic enhancement: ↑ GFP-LC3 puncta, number of autophagosome and autophagosome- lysosome formation in Aβ-treated neuronal cell lines ↑ LC3B-II and LAMP-1 protein expression in Aβ-treated neuronal cell lines and transgenic AD mice | Macroautophagy | [196] | | Carthamus
tinctorius L. | N/A | Hydroxysafflor yellow
A | (BALB/c mice) | Neuroprotective activities: ↑ Neurological score and ↓ apoptotic cells in TBI rats ↓ Neuroinflammatory proteins and microglial activation in TBI rats Autophagic enhancement: ↓ NLRP3 inflammasome in brain of TBI rats ↑ LC3-positive cells, LC3II/I ratio and ↓ p62 protein expression level in brain of TBI rats ↑ Activation of AMPK and ↓ activation of mTOR proteins | pathway | [197] | |----------------------------|---|----------------------------|--|---|---|-------| | N/A | Purchased from
WuXi PharmaTech,
China | Cudraflavone B | U251 cells) | Antiproliferative activities: ↓ Viability and ↑ apoptosis in glioma cell lines ↑ ER stress pathway in glioma cell lines Autophagic enhancement: ↑ Autophagic vacuoles, autophagosomes in glioma cell lines ↑ LC3-II/I ratio, ↓ Activation of mTOR, p70, Akt protein expressions | Macroautophagy
and signalling
pathway | [198] | | Nelumbinis
plumula | N/A | Liensinine | Cerebral Ischemia
(human cortical
neurons and male
Sprague Dawley rats) | Neuroprotective activities: ↑ Viability and ↓ apoptosis and cytotoxicity in OGD/R cortical neuron ↑ Neurological score and function in cerebral cortex of post MCAO rats Autophagic suppression: ↑ Activation of mTOR and p62 protein expressions | Suppress
Macroautophagy | [199] | | | | | | ↓ Activation of PI3K and Akt protein expressions | l | | |-----------------------|---------------------------------|-------------|--|--|-----------------------------------|-------| | Punica granatum
L. | Purchased from
Sigma Aldrich | Punicalagin | Parkinson's disease
(male Sprague Dawley
rats) | Neuroprotective activities: ↑ Motoneuron functions in MnCl ₂ treated rats ↑ Dopamine, norepinephrine, serotonin, while ↓ Acetylcholine levels in brain of MnCl ₂ treated rats ↓ Oxidative stress and ↑
antioxidant enzymatic activities ↓ Neuroinflammatory proteins in brain of MnCl ₂ treated rats ↓ Apoptotic and endoplasmic stress biomarkers level Autophagic suppression: ↓ AMPK activation, Beclin-1 and SIRT-1 mRNA expression brain of MnCl ₂ treated rats | Suppress
signalling
pathway | [200] | | N/A | Purchased from
Sigma Aldrich | Phloretin | Parkinson's disease
(C57BL/6 mice and
SH-SY5Y cells) | Neuroprotective activities: ↓ PD behaviour and ↑ motoneuron function in rotenone-treated mice ↑ Clearance of α-synuclein and tyrosine hydrolase dopaminergic expression in rotenone-treated mice ↓ Pro-apoptotic protein expressions in rotenone-treated mice and SH-SY5Y cells ↓ Intracellular ROS and ↑ MMP level in rotenone-treated SH-SY5Y cells Autophagic enhancement: | Macroautophagy | [201] | | | | | | ↑ Atg5, Atg7 and Beclin-1 protein expressions in rotenone-treated mice and SH-SY5Y cells ↓ p62 and activated-mTOR protein expressions in rotenone-treated mice ↑ LC3-II/I ratio protein expression in rotenone-treated SH-SY5Y cells | | | |---------------------------------|----------------------------------|---------------|---|--|----------------|-------| | N/A | Purchased from
MedChemExpress | Aucubin | Inflammatory pain
(male C57BL/6 mice) | Protective activities: ↓ Inflammatory pain in CFA treated mice ↓ Inflammatory protein level in CFA-injected paw Autophagic enhancement: ↓ PINK1 and Parkin mitophagy protein expression in CFA-injected mice ↑ LC3B and ↓ p62 protein expression | Macroautophagy | [202] | | Stephania
tetrandra S. Moore | N/A | Fangchinoline | Alzheimer's disease
(male C57BL/6 mice
and N2A cells) | Neuroprotective activities: ↑ Viability of APP expressing transgenic AD N2A cells ↑ Cognitive and memory function of Aβ-treated mice ↓ Oxidative stress and apoptosis in Aβ-treated mice Autophagic enhancement: ↓ BACE-1 protein expression in transgenic N2A cells ↑ LC3-II/I, Beclin-1 and ↓ p62 protein expressions in transgenic N2A cells and Aβ-treated mice | Macroautophagy | [203] | | Polygala tenuifolia
Willd. | N/A | Tenuigenin | Spinal cord injury
(male Sprague Dawley
rats) | Neuroprotective activities: ↑ Locomotor function in SCI rats ↑ Viability and ↓ apoptosis in spinal neuron of SCI rats Autophagic suppression: ↓ LC3-II/I ratio and Beclin-1 proteins ↓ PTPN1, IRS1, activated-Akt and activated-mTOR protein expressions | Suppress
Macroautophagy | [204] | |-------------------------------|---|------------|---|--|---|-------| | Rhodiola rosea L. | Purchased from
Chengdu Must Bio-
Technology | Rosavin | Cerebral Ichemia (male
C57BL/6 mice and
HBMVE cells) | Neuroprotective activities: \[\] Brain infarct volume and neuronal injury in the brain of post MCAO mice \[\] Neuroinflammatory proteins and number of apoptotic cells in both post MCAO mice and OGD/R-induced HBMVE cells \[\] ERK1/2, p38, JNK1/2 protein expressions Autophagic suppression: \[\] LC3-II/I and Beclin-1 protein expressions in both experiments | Suppress
Macroautophagy | [205] | | Piper Longum L. | N/A | Piperine | Parkinson's disease
(male Sprague Dawley
rats and SH-SY5Y
cells) | Neuroprotective activities: ↑ Motoneuron function and viability of dopaminergic neurons in the substantial nigra of 6-OHDA treated PD rats ↑ α-synuclein clearance in both substantial nigra and colon tissue of 6-OHDA treated PD rats Autophagic enhancement: | Macroautophagy
and signalling
pathway | [72] | | | | | | ↑ Number of autophagosomes in substantial nigra and colon tissue of 6-OHDA treated PD rats ↑ LC3-II/I and ↓ p62 protein expression in both substantial nigra and colon tissue of 6-OHDA treated PD rats and in A53T mutant α-synuclein transgenic SH-SY5Y cells ↓ Activation of PI3K, Akt, and mTOR protein expressions in substantial nigra and colon tissue of 6-OHDA treated PD rats, and in A53T mutant α-synuclein transgenic SH-SY5Y cells | | |---|---|--|--|--|------| | | | | No autophagic effec | t | | | Green tea,
camellia sinensis
(leaves) | Provided by
Shanghai U-sea
Biotech Co., Ltd.,
Shanghai, China. | Epigallocatechin-3-
gallate
Catechin | Alzheimer's disease
(human SH-SY5Y
neuroblastoma and rat
primary cortical
neurons) | Show neuroprotective properties without alternation of autophagic activities in rat primary cortical neurons | [77] | | Peganum harmala | Purchased from Ye
Yuan Company,
Shanghai, China. | Harmine | Parkinson's disease (N2a cells and primary cortical neurons from A53T-α-synuclein transgenic mice) | Neuroprotective activities: ↑ Clearance of α-synuclein in A53T-α-synuclein transgenic mice ↑ Activation of ubiquitin-proteasome system No autophagic activation: The α-synuclein clearance activity of Harmine was not disrupted by the effect of autophagy inhibitor, lysosomal inhibitor and even siRNA of autophagic genes | [83] | | N/A | N/A | Limonene (+) | Alzheimer's disease | Neuroprotective activities: | [78] | |-----------------------------|----------------|--------------|---------------------|---|------| | | | | (drosophila) | ↓ Pathological phenotypes and cell death in AD drosophila | | | | | | | ↓ Intracellular ROS in the eye | | | | | | | imaginal discs of AD drosophila | | | | | | | ↓ ERK activation in the brain of AD | | | | | | | drosophila | | | | | | | ↓ Number of glial cells and NO level in AD drosophila | | | | | | | No autophagic activation: | | | | | | | The effect of limonene (+) did not alter autophagy-related factors, and | | | | | | | the autophagy inhibitor did not stop | | | | | | | the protective effect of limonene (+) | | | | | | | on viability of AD drosophila | | | Originated from | Purchased from | Urolithin A | Alzheimer's disease | Minimal Neuroprotective activities: | [79] | | | MedChemExpress | | (SH-SY5Y cell) | No significant result in recovering | | | and walnut, | | | | MMP level, reducing ROS level, etc. | | | produced by gut
bacteria | | | | No autophagic activation:
LC3-II and p62 levels unchanged | | | Dactoria | | | | Les-11 and poz levels unchanged | |