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Abstract: A single Streptomyces strain often have the potential to produce more than one bioactive compound. 
Fermentation parameters include media compositions, temperature and pH, have great impact on the secondary metabolism 
of Streptomyces and subsequently on production of different microbial products. This review aims to consolidate the studies 
on the cultivation parameters used to enhance the production of secondary metabolite with anti-Vibrio activity from a 
single Streptomyces strain. In turn, this review sheds light on the possible alterations of the cultivation parameters to obtain 
desired anti-Vibrio compounds from Streptomyces sp. Furthermore, the bioactive compounds with anti-Vibrio activity 
identified from Streptomyces sp. were demonstrated to exhibit immense values for future antibacterial agent developments. 
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INTRODUCTION

Fermentation is an important process for the production 
of various structurally-diverse bioactive substances from 
microorganisms, including antibiotics, anticancer, antiviral 
and immunosuppressants[1,2]. Given that the limited 
quantity of bioactive substances is usually produced by 
these microorganisms, fermentation is one of the feasible 
processes to continuously supply majority of these clinically 
useful drugs in the market currently. This is because the 
total chemical synthesis is way too complicated and costly 
than fermentation. For instance, antimicrobial peptides 
such as a novel class of antibiotics, which recently have 
received much attention, is not economically feasible to be 
synthesized chemically if involve larger or more complex 
peptides[3]. Furthermore, medium optimization remains 
one of most critical steps in fermentation technology to 
enhance the production of valuable bioactive compounds. 
To achieve maximum production of desirable compounds, the 
production medium containing appropriate components

(e.g., carbon, nitrogen, NaCl, etc.) coupled with optimal 
fermentation conditions are required to be identified 
and optimized accordingly[1].

Actinobacteria have been regarded as the most prolific 
producers in the microbial world[4–8], especially from 
the genus Streptomyces[9,10]. The genus Streptomyces 
has responsible for the production of more than 70% 
of commercially important antibiotics[2,11], as well as 
many bioactive compounds of pharmacological and 
agricultural interest[12–22]. The discovery of antibiotic 
from Actinobacteria is highly dependent on the effect 
of growth conditions on the production of secondary 
metabolites[23–28]. These soil bacteria are known to have 
complex life cycle which is composing of different 
stages. Secondary metabolites are usually produced by 
Streptomyces sp. at the end of the active vegetative 
growth and during the dormant or reproduction stage[29]. 
The secondary metabolism of Streptomyces is based on 
its unique genetic make-up but the expression can be
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influenced by the surrounding manipulations[30]. Therefore, 
the productions of secondary metabolites are often 
associated with the limitation of nutrients, presence of 
inducer or reduction of growth rate in Streptomyces[23]. It 
is well known that secondary metabolite production can 
be repressed by readily available carbon source, high 
levels of nitrogen and phosphorus, all of which keeping 
the bacteria at active proliferative stage. This indicated 
that the production of secondary metabolites can be 
influenced significantly by various fermentation 
parameters including the nutrient availability, pH, 
temperature, mineral salts, inducers and inhibitors[31]. Small 
modifications in the composition of growth media can 
result variation of the quantity of specific compounds, 
also these modifications could result in the production 
of a completely distinct pattern of molecules[32]. 

Vibrio spp. is autochthonous to various aquatic 
environments, including estuarine, coastal waters and 
sediments[33–36]. Vibrio spp. was known to be 
susceptible virtually to most of the antimicrobial 
agents[37,38]. However, antimicrobial resistance has 
emerged and evolved in many bacterial genera[39–41], 
including Vibrio spp. as a result of excessive use of 
antimicrobial agents in various settings[42]. For instance, 
applications of antibiotics in aquaculture water as 
prophylactics to control infectious diseases in fish and 
aquatic organisms. Furthermore, certain Vibrio species, 
in particular V. parahaemolyticus and V. vulnificus are

significant foodborne human pathogens[43–47]. Hence, the 
increase in emergence of antibiotic-resistant bacterial 
pathogens, including Vibrio spp. is a major public health 
concern[39,40,42]. This issue not only has immense impact on 
human health, it is also a concern on the future ability to 
treat the diseases as antibiotic resistance has developed 
over time, from single classes of antibiotics to multidrug 
resistance and eventually emergence of superbug with 
extreme drug resistance[48,49]. Therefore, it has increased 
the interest of research on the search for more effective 
alternatives to cope with the issue of antibiotic resistant 
bacteria, including Vibrio pathogens[50,51]. The exploration 
of bioactive compounds sourcing from natural resources, 
including plant[52–56], animal[57] or microbial origins[58–64]

constitute an attractive bioprospection strategy among 
the drug discovery scientists. In fact, numerous efforts 
have demonstrated that the genus Strepto-myces capable 
to synthesize various bioactive compounds against Vibrio 
pathogens, representing a valuable source for antibacterial 
agents with anti-Vibrio activities[65–67]. 

In the light of the promising potential of Streptomyces 
as the bioresource of anti-Vibrio compounds, this review 
provides the rationale for the designing and optimizing 
of fermentation medium to facilitate the process of anti-
Vibrio metabolite production in Streptomyces sp. 
Furthermore, the importance of extraction techniques 
for optimum yield of the desired bioactive compounds is 
discussed in this review (Figure 1).
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Figure 1. Fermentation and medium optimization for the production of anti-Vibrio compounds by Streptomyces sp. Fermentation is conducted to induce the production of anti-

Vibrio active metabolites by Streptomyces. Starch and glycerol are both good carbon sources for the production of metabolites with better anti-Vibrio activity (percentage shows 

the changes in the anti-Vibrio activity when added with the indicated component in the fermentation medium). Likewise, yeast extract and nitrate are the preferable nitrogen 

source as compared to casein and ammonium for the production of metabolites with better anti-Vibrio activity by the Streptomyces. The fermentation parameters presented are 

the optimum conditions for the production of anti-Vibrio active metabolites. 
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FERMENTATION PROCESS FOR 
PRODUCTION OF ANTI-VIBRIO 
COMPOUNDS BY STREPTOMYCES SP.

Within the 64 studies analyzed in this review, a total 
of 38 studies conducted secondary screening of the 
metabolites produced by the anti-Vibrio Streptomyces 
via submerged fermentation process. This implies that 
59.4% of the studies showed the anti-Vibrio
Streptomyces strains displayed the antagonistic 
activities against different Vibrio sp. through the 
production of bioactive secondary metabolites. 
Thus, more study should perform fermentation in 
order to fully unravel the potential of the anti-Vibrio
Streptomyces strains in the production of bioactive 
compounds against Vibrio sp. Solid state fermentation 
was reported as an alternative fermentation process 
to facilitate the secondary metabolites production 
from the anti-Vibrio Streptomyces[65]. The solid state 
fermentation involves the use of solid particles free 
of water or with little moisture for microbial 
growth and secondary metabolites production[68]. 
Mohana and Radhakrishnan (2014)[65] indicated that 
solid state fermentation process was more suitable 
for Streptomyces MA7, a strain derived from 
mangrove rhizosphere sediment in producing anti-
Vibrio bioactive metabolites against Vibrio pathogens 
such as V. cholerae O1, V. cholerae O139, V. 
parahaemolyticus and V. mimicus. However, there is 
limited information on studies comparing the two 
different fermentation techniques in the production 
of secondary metabolites with anti-Vibrio activities. 
More study could be performed to investigate the 
optimal fermentation techniques for the production of 
anti-Vibrio compounds from Streptomyces at a higher 
yield. Nevertheless, there was study suggested that 
solid-state fermentation is better for antibiotic 
production by Streptomyces in the aspects of its stability 
and quantity[69]. For instance, solid-state fermentation 
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of Streptomyces species resulted in higher yield and 
stability of well-known antibiotics including tetracycline[70], 
neomycin[71], cephamycin C[72] and oxytetracycline[73]. 

FERMENTATION PARAMETERS AFFECTING 
ANTI-VIBRIO COMPOUNDS PRODUCTION

Media composition

Media composition plays an important role in determining 
the microbial secondary metabolites as it comprises of 
components that may act as activators of certain signaling 
pathway in the production of secondary metabolites[31]. 
Thus, a single strain, grown under different condition may 
result in production of substantially different compounds. 
A study reported that by using a defined medium resulted 
in production of new metabolites which were not found in other 
media used to cultivate Streptomyces sp. C34, and exhibited 
antibacterial activity towards V. parahaemolyticus[74]. The 
defined medium (Table 1) containing 2 mM fluoride employed 
by the study was previously developed for the production of 
fluorinated secondary metabolites by Streptomyces[75]. The 
mechanism for the production of the novel metabolites by 
Streptomyces C34 has yet to be elucidated. Nevertheless, it 
was suggested that the addition of fluoride salts could have 
activated the unique biosynthetic genes which responsible 
for the production of those new compounds[75]. Therefore, 
other than depending on the biosynthetic potential of the 
microbes which determines the types of bioactive compounds, 
the composition of the media also plays a substantial role 
on the success of screening programs based on culture-
dependent bioprospecting strategy. According to the 38 studies 
that performed submerged fermentation, different types of 
fermentation broths were used, including starch casein 
broth, soybean meal broth, potato dextrose broth, arginine 
glycerol broth, actinomycetes isolation broth and glycerol 
asparagine. Besides that, examples of fermentation broth 
with defined compositions used for the production of 
secondary metabolites from the anti-Vibrio Streptomyces
can refer to Table 1.

Parameters

Composition (% w/v)*

Studies that utilized mixture of complex and simple carbon and nitrogen sources#

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Glucose 1 0.4 2 0.5 0.2

Soluble starch 2 0.5 0.5 1 1 1 0.5 1 0.1 2

Glycerol 1 1 1 1

Myo-inositol 0.04

Malt extract 0.4

Soybean 2 0.5 0.5 0.1 1.5

Casein 0.03 0.03 0.03

Cornsteep powder 1

Polypeptone 0.5

Peptone 0.2 0.2

Yeast extract 0.2 0.4 0.4 0.2 0.25 0.3

L-tyrosine 0.05

L-asparagine 0.1

MSG 0.5

CaCO3 0.002 0.002 0.32 0.025 0.002 0.1 0.004

Table 1. The composition of selected production media and fermentation conditions used for secondary metabolites production in the Streptomyces sp. displaying anti-Vibrio activity.
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The influence of complex and simple carbon source on 
anti-Vibrio activity

The carbon source has significant effect on the production 
of antibiotic and the morphological development of Strep-
tomyces sp. Several mechanisms have been described in the 
genus Streptomyces to illustrate the carbon catabolite 
repression effects on secondary metabolites production[93,94]. 
As for aim of this review, it is to consolidate and rationalize 
the information available on the effect of different media 
composition on Streptomyces toward the production of 
metabolites against Vibrio sp. Furthermore, major emphasis 
will be given towards the efficacy of the anti-Vibrio
metabolites produced by Streptomyces in response to the 
presence of specific carbon source in the fermentation media. 
Based on the data of media composition presented in the 
reviewed studies, carbon sources such as starch, glycerol 
and glucose are commonly used as growth substrate in the 
fermentation media used to produce secondary metabolites. 
Majority of the studies incorporated starch (45.2%), a 
complex carbohydrate in the fermentation medium for 
the production of secondary metabolites with anti-Vibrio
activity (Table 2). 

Literatures demonstrated that the optimal production of 
secondary metabolites is generally achieved by culturing 
the microorganisms in media containing slowly assimilated 
nutrient sources while the readily utilized carbon source is 
often known to repress antibiotic production. For instance, 
the use of glucose as a carbon source had a negative 
influence on the production of nystatin as well as their 
morphology to a certain extent that resulted in termination 
of cell growth and nystatin production[95]. This is also 
commonly seen in other Streptomyces sp., such as in the 
production of streptomycin, chloramphenicol and cephamycin 
by S. griseus[96], S. venezuelae[97] and S. clavuligerus[97]

respectively. However, previous study indicated novobiocin 
production by S. niveus is subjected to catabolite

repression by citrate assimilation and not caused by 
glucose assimilation[98].  Streptomyces avermitilis was 
shown to assimilate glucose slowly and become the 
best carbon source in determining the production rate 
of avermec-tin[99]. Ikeda et al. (1988)[99] suggested that 
the activity of 6-phosphogluconate dehydrogenase of the 
pentose phosphate pathway is associated with avermectin 
production, in which the NADPH generated by the enzyme 
could be used as the intermediate for the biosynthesis of 
avermectin. Previous study also indicated that glucose is 
important for the biosynthesis of ε-rhodomycinone, an 
important aglycone precursor to anthracycline antibiotic 
in Streptomyces[100].  

To identify the best carbon source for the production of 
anti-Vibrio metabolites by Streptomyces, the anti-Vibrio
activities of the Streptomyces strains with or without the 
specific carbon source were compared based on the 
inhibition zones (Table 3). In Table 3, the anti-Vibrio
activity of metabolites produced by Streptomyces strains 
increased by 33.1% in the presence of starch as carbon 
source. Furthermore, a ten folds increment of anti-Vibrio
activity is demonstrated by Streptomyces metabolites 
produced in the presence starch when compared to the 
use of glycerol as carbon source. In contrast, the use of 
glucose as carbon source is shown to repress the anti-
Vibrio activity of the Streptomyces metabolites by 8.1% 
based on the median inhibition zones. This information 
is in line with other studies, indicating starch is a good 
carbon source for anti-Vibrio metabolite production. The 
starch-based A1BFe medium (Table 1) resulted in 
production of twice the amount of anti-Vibrio compounds 
by Streptomyces atrovirens PK288-21 compare to 
culture in glucose-based TCG medium[80]. The study 
suggested that Streptomyces atrovirens PK288-21 
utilized starch as the main carbon source that could 
increase the production of antibacterial compounds[80]. 
The continuous and gradual hydrolysis of starch could 
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NaCl 0.2 0.05 0.2 0.1 0.05 0.2 0.05 0.08

NaF 0.0084

NH4Cl 0.15 0.1

KBr 0.01

KCl 0.01

K2HPO4 0.05 0.2 0.2 0.05 0.2 0.05 0.001

KNO3 0.1 0.2 0.2 0.2 0.005

FeSO4 0.001 0.001 0.004 0.0025 0.001

MgSO4 0.005 0.05 0.005 0.05 0.05 0.005 0.05 0.02

CoCl2 0.001

ZnSO4 0.001

Seawater + + - - - - - + + + + + + -

pH 7.5 ns ns 7.2 7.4 8 7 7.2 7.4 7.0±0.2 ns 7.5 7 7

Temperature (oC) 27 28 28 29 30 ns 28 28 28 28 27 28 28 28

* The percentage of each composition was calculated using: w/v% = (weight of solute (g)/volume of media(mL)) × 100 

# 1 - Soybean medium[65], 2 - Starch casein broth[76], 3 - GsB broth medium[77], 4 - Casein glycerol/ starch medium[78], 5 - Production broth[79], 6 - A1BFe 
media[80], 7 - Defined medium[74], 8 - Fermentation broth[81], 9 - R2A medium[82], 10 - Starch casein broth[83], 11 - Soybean meal broth[84] 12 - Fermentation 
broth[85] 13 - Melanin production medium[86, 87],14 - Fermentation broth[88–92]  
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avoid the carbon catabolite repression mechanisms that 
usually triggered by carbon sources that are more easily 
metabolized by the microorganism such as glucose[101]. 
In addition, the antibacterial compounds present were 
consisted of two benzaldehydes compounds identified 
from the fermented broth of S. atrovirens PK288-21. 
Both of the benzaldehyde derivatives demonstrated 
antibacterial activity against both V. anguillarum and 
V. harveyi, particularly against V. harveyi with lower 
MIC values reported as compared to ciprofloxacin 
(58 µg/mL). The work showed that the compound, 
2-hydroxy-5-(3-methylbut-2-enyl)benzaldehyde (9) 

was as a new derivative while 2-hepta-1,5-dienyl-3,6-
dihydroxy-5-(3-methylbut-2-enyl)benzaldehyde (10) was 
previously reported from fungus Eurothium rubrum. 
Similarly, another 4 studies (Table 2) also demonstrated 
the use of starch with concentrations ranging from 0.1 to 
1% (w/v), as the sole carbon source in the fermentation 
medium for the production of secondary metabolites by 
Streptomyces strains, and exhibited diverse strength of 
antibacterial activity against Vibrio sp.[76,77,83,84]. Overall, 
starch is recommended to be a good carbon source for the 
production of anti-Vibrio metabolites from Streptomyces.

Table 2. The compositions of fermentation medium and the fermentation conditions extracted from the reviewed studies on Streptomyces with anti-Vibrio activity.

Parameters Compositions Concentration 
% (w/v)/ Units

Number of studies performed 
fermentation (n = 31)

Percentage (%)

Carbon sources Complex carbon source only

Starch 0.1 1

0.5 2

1 2

Sugarcane 1 1

•	 Yeast extract 5 1

Total = 7 22.6

•	 Glucose 0.2 5

•	 Glycerol 1 2

•	 Glycerol, myoinositol 1, 0.04 1

Total = 8 25.8

Mixture of both complex and readily utilizable

•							Starch, glucose 2, 1 1

•							Starch & glycerol 1 1

•							Glycerol, starch, glucose 1,1,1 2

•							Malt extract, glucose 0.4, 0.4 1

Total = 5 16.1

Media used by studies w/o specify the composition 

•							Starch casein broth - 5

•							Potato dextrose broth 1

•							Arginine glycerol broth 1

•							Glycerol asparagine broth 1

•							ISP2 1

•							Soybean meal medium 1

•							Actinomycetes isolation medium 1

Total = 11 35.5

Nitrogen sources Complex nitrogen source only

•							Soybean 0.2 1

0.5 1

•							Tryptone, yeast extract 1, 5 1

•							Peptone, yeast extract 0.2, 0.4 1

•							Soybean, yeast extract 1.5, 0.25 1

•							Polypepton, yeast extract, corn steep liqour 0.5, 0.2, 0.1 1

•							Soybean meal, peptone, yeast extract 0.5, 0.2, 0.2 1

•							Malt extract, yeast extract 0.4, 0.4 1
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•							L-tyrosine, L-asparagine 0.05, 0.1 2

Total = 10 32.3

Mixture of both complex and readily utilizable

•							Soybean, KNO3 0.1, 0.005 1

•							Casein, KNO3 0.03, 0.2 3

•							Yeast extract, NH4Cl 0.3, 0.1 5

•							MSG, NH4Cl 0.5, 0.15 1

Total = 10 32.3

Media used by studies w/o specify the composition 

•							Starch casein broth - 5

•							Potato dextrose broth 1

•							Arginine glycerol broth 1

•							Glycerol asparagine broth 1

•							ISP2 1

•							Soybean meal medium 1

•							Actinomycetes isolation medium 1

Total = 11 35.5

Phosphate K2HPO4 0.001 5

0.05 4

0.2 3

Total = 12 38.7

Salt NaCl 0.05 3

0.08 5

0.1 1

0.2 3

1 1

Total = 13 41.9

pH 7 9

7.2 1

7.4 1

7.5 2

8 1

Not specified 17
Total = 31

Temperature (oC) 23 1

25 1

27 2

28 13

29 1

30 5

32 1

35 1

26-30 1

28-32 1

Not specified 4
Total = 31

Critical review of fermentation...       
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Table 3. The effect of carbon, nitrogen and NaCl on the anti-Vibrio activity of Streptomyces metabolites.

Media composition 

(concentration range, w/v %)

Median of Inhibition zone (mm) Percentage of changes in anti-vibrio activity 
(%)

Absence Presence

Carbon sources

Starch (0.32 – 2) 15.03 (n = 16) 20 (n = 10) Increased by 33.07

Glucose (0.2 – 2) 17.40 (n = 18) 16 (n = 9) Decreased by 8.05

Glycerol (0.12 – 1) 17.40 (n = 20) 18 (n = 8) Increased by 3.45

Nitrogen sources

Yeast extract (0.3 - 1) 16 (n = 16) 19 (n = 8) Increased by 18.75

Casein (0.03 - 1) 16 (n = 15) 17.4 (n = 10) Increased by 8.75

Ammonium salts, NH4
+ (0.0001 

- 0.12)
16.4 (n = 18) 18 (n = 5) Increased by 9.75

Nitrate salts, NO3
- (0.2) 16 (n = 16) 18 (n = 7) Increased by 12.50

Others

NaCl (0.05 - 1.2) 17 (n = 8) 18 (n = 16) Increased by 5.88

Influence of organic and inorganic nitrogen 
source on anti-Vibrio activity

Nitrogen sources such as nitrate and ammonium salts 
which favorable for growth were shown to affect 
negatively on the production of secondary metabolites in 
Streptomyces. The readily utilized nitrogen sources 
were demonstrated to cause repression of enzymes 
responsible for tylosin in Streptomyces fradiae[102]. 
Complex protein source such as soybean meal and 
the slowly assimilated amino acid such as proline 
are good nitrogen source to promote high secondary 
metabolites production. Therefore, slow-metabolizing 
nitrogen sources are preferable to supply the 
essential nutrients to the antibiotic-producing strains. 
Yeast extract, corn steep liquor and soybean flour are 
commonly used complex organic nitrogen sources[31]. 
Based on the reviewed studies, soybean meal (0.2 and 
0.5% w/v) was evidenced in studies[77,103] as a sole 
nitrogen source for the production of metabolites that 
exhibited anti-Vibrio activities by the Streptomyces 
strains (Table 2). Furthermore, the anti-Vibrio activity 
of the Streptomyces strains cultivated in different 
nitrogen sources were compared based on the median 
inhibition zone (Table 3). The usage of yeast extract as 
a complex organic nitrogen source is found to enhance 
the anti-Vibrio activity of the Streptomyces 
metabolites by 18.75%, when compared to the only 
8.75% increment in the presence of casein as an 
organic nitrogen source. Besides that, nitrate is a more 
favorable inorganic nitrogen source when compared 
to the use of NH4

+ in the fermentation media of the 
anti-Vibrio Streptomyces. None of the studies utilized 
ammonium or nitrate salts as the sole nitrogen source 
for the fermentation process. A total of 19 studies 
demonstrated the use of a mixture of readily and 
slowly utilizable nitrogen sources in the optimization 
of medium composition for the improvement of the yield 
of secondary metabolites (Table 1). As the readily

utilizable sources such as ammonium salts and nitrate 
salts serve to support the exponential growth of the 
bacteria while the slowly used sources such as yeast extract 
and casein serve to sustain the production of metabolites 
during the stationary phase, as the rapidly assimilated 
sources are depleted[31]. Thus, the combination of yeast 
extract and nitrate salts could be used to serve as a good 
nitrogen sources in the production of anti-Vibrio metabolites 
in the genus Streptomyces.

Inorganic phosphate

Inorganic phosphorus is the common major growth-limiting 
nutrient in natural environments[31]. Literatures showed that 
high concentration of inorganic phosphate in culture media 
causes negative regulation on the synthesis of secondary 
metabolites in different Streptomyces sp.[104,105]. A total of 
12 studies (38.7%) indicated the supplementation of 
dipotassium phosphate as a source of inorganic phosphate, 
with wide range of concentrations from 0.001 to 0.2% (w/
v) (~ 0.5–115mM) in the fermentation medium for the 
production of anti-Vibrio secondary metabolites by 
Streptomyces (Table 2). None of the studies indicated 
the potential of inorganic phosphate that could resulted 
in lower production of anti-Vibrio compounds. Although 
some literatures demonstrated the supply of inorganic 
phosphate more than 3–5 mM are frequently inhibitory to 
antibiotic biosynthe-sis[105,106]. Liras et al. (1990)[106] indicated 
phosphate stimulates the expression of genes involved in the 
biosynthesis of macromolecules and house-keeping genes 
essential for growth whereas it often inhibits expression of 
genes encoding for biosynthesis of secondary metabolites. 
The p-ami-nobenzoic acid synthase (PABA synthase), 
that catalyzes the conversion of chorismic acid to p-
aminobenzoic acid which is a precursor for candicidin 
(macrolide antibiotic) was found to be inhibited by potassium 
phosphate at 5 to 10 mM resulting in repression of candicidin 
biosynthesis in Streptomyces griseus[107]. Studies showed 
that the biosynthesis of several groups of antibiotic are
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particularly sensitive to phosphate repression such as 
aminoglycosides[108], tetracyclines[109], macrolides[110]

and polyenes[104]. Meanwhile, the biosynthesis of 
beta-lactam antibiotic and peptide secondary 
metabolites were poorly sensitive to high 
concentration of inorganic phosphate. For example, 
the production of cephalosporin is optimal at 25 mM 
phosphate but higher concentrations of phosphate 
resulted in 85% reduction of cephalosporin production 
in S. clavuligerus[111]. These evidences suggested that the 
genes encoding the enzyme for the secondary metabolites 
produced by the anti-Vibrio Streptomyces may have 
lower sensitivity toward phosphate repression. However, 
the concentration of inorganic phosphate to be used in 
fermentation media should be optimized to ensure 
maximum production of anti-Vibrio metabolites by the 
Strep-tomyces. By comparing the anti-Vibrio activity 
of the Streptomyces metabolites under different 
concentration of K2HPO4 (Table 4), based on the 
median of inhibition zone, it is observed that the anti-
Vibrio activity reduced by 33.3% when the concentration 
of K2HPO4 used is increased from 0.001% to 0.2% (w/
v). These data suggest that inorganic phosphate is 
recommended to be maintained at lower concentration 
such as at 0.001% (w/v) as a source of phosphorus 
in the fermentation media for optimal production of 
anti-Vibrio metabolites from Streptomyces.

Table 4. The effect of different compositions and the fermentation conditions on 

the anti-Vibrio activity of Streptomyces metabolite

Sodium chloride

The supplementation of sodium chloride in the fermentation 
medium is one of the non-nutritional stress factors 
influencing the secondary metabolites production[112,113]. 
Based on the reviewed studies, a total of 13 studies 
supplemented sodium chloride in the fermentation medium 
for the production of anti-Vibrio secondary metabolites 
from Streptomyces (Table 2). The concentration of 
sodium chloride used was ranging from 0.05 to 1% (w/
v), showing production of anti-Vibrio metabolites 
from Streptomyces. In line with the literatures, the

anti-Vibrio activity of Streptomyces metabolites is enhanced 
by 5.88% when cultivated in the presence of sodium chloride 
as compared to the metabolites produced in the absence 
of sodium chloride (Table 3). Barakat and Beltagy (2015)
[114] indicated the Streptomyces ruber ERH2 supplemented 
with 1% sodium chloride (w/v) produced metabolites 
against V. ordalii fish pathogen, with high inhibition zone 
measured at 15mm. As indicated in Table 4, a small 
increase of sodium chloride concentration, such as 
from 0.05 to 0.08% (w/v) resulted in 99.7% increment 
in the anti-Vibrio activity, thus indicated the optimum 
concentration of sodium chloride for the production of 
anti-Vib-rio metabolites is at 0.08% (w/v) for Streptomyces. 
At the meantime, the further increase of sodium chloride 
in the fermentation media from 0.08% (w/v) to more 
than 0.2% (w/v) may reduce the anti-Vibrio activity from 
Streptomyces metabolites by 50%. Similarly, Syvitski et 
al. (2006)[115] demonstrated that the presence of salt in 
the growth medium could result in differential production 
of antibiotic by Streptomyces. Furthermore, this study 
indicated the addition of 2.5% of sodium chloride 
inhibited the production of actinorhodin, but activated 
the production of undecylprodigiosin[115]. The study also 
reported high salt conditions that resulted in differential 
expression of these genes, actII-ORF4 and redD
encoding corresponding pathway specific transcriptional 
regulators for both actinorhodin and undecylprodigiosin 
biosynthesis in Streptomyces coelicolor A3(2)[115].

Temperature

An optimal temperature is often required for the production 
of secondary metabolites. Based on the reviewed 
studies, 28oC (41.9%) is the most common incubation 
temperature used for the secondary metabolite production. 
Slightly higher incubation temperature at 30oC is also 
reported in several studies (16.1%) (Table 2). There are also 
studies employed a lower incubation temperature ranging 
from 23-25oC[116,117]. The studies indicated that the optimal 
temperature for production of secondary metabolites can 
be varying considerably between the similar genera of 
Actinobacteria. Furthermore, some studies indicated that 
optimal temperature for production of secondary metabolites 
is generally lower, when compared to growth of 
Streptomyces sp. Thakur et al. (2009)[118] reported 
Streptomyces sp. 201 showed narrow range of incubation 
temperature for growth and antibiotic production, 
maximum mycelial growth was measured at 35oC while 
highest antibacterial activity was observed at 30oC. 
Thirumurugan and Vijayakumar (2015)[119] also reported 
a strain, Streptomyces ECR77 that produced anti-
Vibrio secondary metabolites after cultivated at 28-30oC 
although this strain showed optimal growth at 35oC. 
Costa and Badino (2012)[120] also recommended that the 
reduction of temperature could be useful in increasing the 
production of clavulanic acid by Streptomyces clavuligerus. 
According to Table 4, repression effect could occur via 
increase of fermentation temperature from the optimum 
28oC to 30oC, resulting in 25% reduction of anti-Vibrio
activity (based on the median of inhibition zone) from the 
Streptomyces metabolites. Hence, these data suggest that 
lower incubation temperature results in lower cellular 
growth and substrate consumption which could minimize 
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Parameters Concentration (w/v 
%) / Range

Median of inhibition 
zone (mm)

NaCl 0.05 15.02 (n = 2)

0.08 30.00 (n =3)

0.20 19.00 (n = 8)

> 0.20 15.00 (n = 3)

K2HPO4 0.001 30.00 (n = 3)

0.01 - 0.05 16.52 (n = 4)

0.2 20.00 (n = 1)

pH 7 15.03 (n = 7)

7.1 – 7.3 18 (n = 5)

> 7.3 22.5 (n = 2)

Temperature (oC) < 28 16.4 (n = 2)

28 20 (n = 12)

30 15 (n = 7)
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the metabolite repression effects and also reduces end-product 
degradation, eventually increasing the yield of secondary 
metabolites production[120].

pH of fermentation media

The pH of the cultivation media has substantial effect on 
the growth of Streptomyces sp. and their antibiotic 
production ability[121,122]. Based on the reviewed studies, 
a narrow range of initial pH (7–8) of the fermentation 
media were used in cultivation of Streptomyces sp. for 
secondary metabolites production (Table 2). Kontro et al.
(2005)[122] reported that the pH ranges for the optimal 
growth of Streptomyces sp. were species specific and 
strongly influenced by the nutrient compositions of the 
media. The use of neutral to slightly alkaline pH as described 
by majority studies suggested that these pH range are 
more preferable for developing a fermentation medium 
for antibiotic producing-Streptomyces. In agreement with 
others, anti-Vibrio activity from Streptomyces metabolites 
could be enhanced by performing the fermentation under 
slightly alkaline pH. As depicted in Table 4, the anti-Vibrio
activity could be increased by 49.7% with a small increase 
of the fermentation media from pH 7 to 7.3.  According 
to Guimaraes et al. (2004)[121] findings, the low pH level 
of the cultivation media (at the end of the shake flask 
fermentation) resulted in no detection of retamycin although 
the final cell concentrations of S. olindensis ICB20 reached 
4 g/liter, indicating that the pH negatively affected the 
activity of the biosyn-thetic enzymes that involved in the 
secondary metabolism. Meanwhile, at higher pH of 8.0, 
it was reported to have negative effect on the excretion 
of the antibiotic, demonstrated by the higher intracellular 
content of retamycin was produced, rather than the yield 
of extracellular retamycin[121]. 

EXTRACTION OF SECONDARY 
METABOLITES 

The extraction is a critical step to isolate the desirable 
secondary metabolites from the complex fermented 
products[123]. Solvent extraction is one of the most 
common extraction methods due to the high selectivity 
and solubility of target compositions. It has been widely 
utilized to extract fermentation-derived microbial products 
prior to the final purification of bioactive compounds 
by chromatography[74,123,124]. There are a wide range 
of approaches available for the recovery of microbial 
metabolites. Primarily, the types of extraction method 
employed is chosen depending on the compounds of 
interest residing whether it is excreted into the medium 
or produced intracellularly. Generally, direct solvent 
extraction is conducted if the desired product is present in 
the cell and the medium. However, the common practice 
in extraction of microbial product from the cultivation 
media involves the separation of the microorganism 
biomass by centrifugation or filtration prior to solvent 
extraction of the cell free medium[125,126]. Among the 31 
studies that performed fermentation, 18 studies (58.1%) 
conducted solvent extraction method to extract and 
determine the antibacterial activity of the bioactive 
compounds present in the fermented product. 

The selection of most appropriate solvent is critical in 
determining the successfulness of yielding the desired 
product. Nonpolar solvents (petroleum ether, chloroform 
and hexane) are useful in extracting lipophilic 
compounds such as alkanes, sterols, alkaloids, fatty acids, 
coumarins and some terpenoids. Some alkaloids and 
flavonoids are compounds with medium polarity can be 
extracted with medium polarity solvents such as ethyl 
acetate. Meanwhile the more polar compounds such as 
flavonoid glycosides, tannins and some alkaloids are 
extracted with the carbon-bonded oxygen-bearing 
extractants include alcohols, esters and ketones [123]. Table 
5 shows the examples of bioactive compounds isolated 
from anti-Vibrio Streptomyces using different organic 
solvents.

                                                                                                                                                                                                        Tan LT-H et al.

Source Compounds Antibacterial activity References

Ethyl acetate of Streptomyces rosa var. notoensis Nanaomycin A (1) MIC: 6.3 μg/mL against V. alginolyticus 138-2
MIC: 3.1 μg/mL against V. parahaemolyticus K-1  

[127]

Nanaomycin D (2) MIC: <0.05 μg/mL against V. alginolyticus 138-2
MIC: <0.05 μg/mL against V. parahaemolyticus K-1

Methylene chloride extract of endophytic Strepto-
myces sp. NRRL30562 derived from plant, Kenne-
dia nigriscans

Munumbicin B (3) 16 mm against V. fischeri PIC345 [116]

Munumbicin C (4) 9 mm against V. fischeri PIC345

Munumbicin D (5) 12 mm against V. fischeri PIC345

Methanol extract of desert soil-derived Streptomy-
ces sp. C34

Chaxalactin A (6) MIC: 12.5 µg/mL against V. parahaemolyticus [74]

Chaxalactin B (7) MIC:  20 µg/mL against V. parahaemolyticus

Chaxalactin C (8) MIC: 12.5 µg/mL against V. parahaemolyticus

Acetone extract of Streptomyces atrovirens PK288-
21 derived from marine seaweeds

2-hydroxy-5-(3-methylbut-
2-enyl)benzaldehyde (9)

MIC: 20 µg/mL against V. harveyi
MIC: 65 µg/mL against V. anguillarum

[80]

Table 5. The bioactive compounds identified from the Streptomyces sp. displaying anti-Vibrio activities.



10

2-hepta-1,5-dienyl-3,6-
dihydroxy-5-(3-methylbut-
2-enyl)benzaldehyde (10)

MIC: 32 µg/mL against V. harveyi

MIC: 65 µg/mL against V. anguillarum

Acetone extract of Streptomyces sp. K01-0509 Guadinomine B (11) IC50: 14 nM potent type III secretion system (TTSS) 
inhibitor

[128]

Ethyl acetate extract of Streptomyces sp. SCSIO 
01689 derived from submarine sediment

Pyranosesquiterpene com-
pound (12)

MIC: >100 µg/mL against V. anguillarum [82]

Cyclo(D)-Pro-(D)-Ile (13) MIC: 0.05 µg/mL against V. anguillarum

Cyclo(D)-Pro-(D)-Leu (14) MIC: 0.04 µg/mL against V. anguillarum

Cyclo(D)-trans-4-OH-Pro-
(D)-Phe (15)

MIC: 0.07 µg/mL against V. anguillarum

Critical review of fermentation...       

Based on the data, the commonly used solvents for the 
extraction of bioactive compounds include, methanol, 
acetone, chloroform, ethyl acetate, n-butanol, n-hexane 
and petroleum ether. From these studies, ethyl acetate 
(83.3%) was the most commonly used solvent. This may 
be due to the property of ethyl acetate which is only partially 
miscible with water, hence allowing easier recovery of 
the metabolites from the fermentation broth by liquid-
liquid extraction methods. Besides that, methanol was the 
second (27.8%) most commonly utilized solvent among 
the reviewed studies. Usually, methanol is preferable for 
the extraction of unknown metabolites from new strains 
of bacteria. This is because methanol has been known 
to be efficient in extracting a wide range of metabolites 
from bacteria[129]. Eventually, the resulting extract is 
filtered, concentrated by vacuum evaporation before 
being used for bioactivity analysis. It is imperative to 
remove the solvent or extractant completely from the 
resulting extracts as their presence in the final product is 
undesirable and might affect the results of the bioactivity 
screening. Gas chromatography is a useful tool for the 
detection of residual solvents. This is because of the low 

Figure 2. The chemical structures of anti-Vibrio secondary metabolites isolated from Streptomyces sp.

detection limits allowing for the detection of trace organic 
compounds[130]. Furthermore, supercritical carbon dioxide 
at 200 atm and 35oC was shown to be effective in removing 
organic solvents from antibiotic without affecting the 
antibiotic activities[131]. 

Moreover, it is common to find that interesting 
compounds can be overlooked due to the presence of other 
molecules in a crude extract, or simply because of its low 
titers in an extract resulted overall low activity observed. 
Fractionation step after the extraction could be a way to 
overcome these issues. For instance, the fractionation of 
Streptomyces sp. C34 methanolic extracts with three other 
different solvents, n-hexane, dichloromethane and ethyl 
acetate and eventually identified the three novel 
macrolactones from the dichloromethane fraction with 
the most diverse metabolic profile[74]. 

Once a bioactive extract is identified, a more detailed 
analysis is performed, normally involving 
chromatography-based separation of the individual 
constituents, to identify the specific bioactive molecules 
and also structure elucidation with NMR analysis.
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Subsequently, the bioactive compounds from these 
screening activities are tested in an in vivo model to 
examine efficacy and safety. Most of current clinically used 
antibiotics have been discovered using this approach. For 
instance, Barakat and Beltagy (2015)[114] demonstrated 
that the phthalic acid isolated from S. ruber EKH2 
with antagonistic activity against V. ordalii is non-toxic 
toward Artemia salina (brine shrimp) up to 2800 µg/mL, 
suggesting that the compound is natural and minimum side 
effects. Furthermore, the conventional screening process 
also provides valuable information such as the 
potency of the antibiotic by determining the minimum 
inhibitory concentration (MIC) of the antibiotic toward 
specific pathogens, the spectrum of activity. Cho and 
Kim (2012)[80] determined the potency of benzaldehyde 
compounds isolated from S. atrovirens PK288-12, 
revealing a lower MIC displayed by both compounds as 
compared to ciprofloxacin against V. harveyi. 

By referring to the studies which reported the isolation of 
Streptomyces with anti-Vibrio activity, most of them have 
focused on the preliminary screening and optimization of the 
various culture conditions. However, there is only limited 
number of the study that further analyzed and identified the 
bioactive compounds that displayed potent antibacterial 
activity against Vibrio sp. Hence, there is a need to improve 
the isolation and screening strategies, as the conventional 
methods of cultivation, extraction and bioac-tivity testing 
of anti-Vibrio Streptomyces are time consuming and prone 
to rediscovery of known compounds. New research 
strategies such as genome mining, which reveals the silence 
biosynthetic gene cluster, coupling with the advanced 
chemical separation and characterization techniques[132]

have been developed to enhance the antibiotic production 
and discovery of new compounds in Streptomyces. 
Furthermore, more advanced extraction method could 
be employed to replace the conventional organic 
solvent extract method. For example, supercritical fluid 
extraction, pressurized solvent extraction and ultrasound-
assisted extraction have been discussed as some of the better 
alternative extraction techniques to isolate bioactive 
natural products[133]. These advanced extraction methods 
are known for their higher selectivity, shorter extraction 
time, nontoxic organic solvents and more environmental 
friendly as compared to the conventional solvent extraction 
method[133]. Majority of these advanced extraction 
methods have been widely used to extract biologically 
active compounds with antioxidant and antimicrobial activity 
from plants[53,134]. Despite that, only a small portion of 
studies have utilized the advanced extraction methods to 
extract the bioactive compounds from the fermentation 
broth of microorganism. For instance, griseofulvin, which 
is one of the few examples of microbial antifungal antibiotic, 
was extracted with supercritical carbon dioxide extraction 
method[135]. Although the supercritical carbon dioxide is 
less effective in extracting highly polar compounds, this 
extraction method offers a better alternative to organic 
solvents because of its nontoxic property, inexpensive and 
most importantly can be easily removed from the final 
products[133]. This is because the residual organic solvent 
presents a major concern over the safety of food and 
pharmaceutical products over the years[136]. Therefore, 
future studies are encouraged to utilize one of these 

advanced extraction methods to improve the yield and 
purification of the biologically active compounds from 
Streptomyces. 

CONCLUSION

Given the ever-increasing reports of antibiotic resistant 
Vibrio pathogens, there is a critical need to search for 
alternatives of major antibiotics. Numerous studies 
demonstrated the production of promising bioactive 
compounds with anti-Vibrio activity by Streptomyces
sp. Fermentation parameters can have great impact on the 
secondary metabolism of Streptomyces and subsequently 
on production of different microbial products. The 
information and knowledge obtained in this review could 
help in the optimizing of suitable fermentation medium 
is important for better yield and antimicrobial activity 
from Streptomyces sp. We suggest that starch and yeast 
extract are both good carbon and nitrogen source for 
the secondary metabolites production by the anti-Vibrio 
Streptomyces. The temperature, concentrations of 
phosphate and sodium chloride are also important 
criteria should be taken into consideration when designing 
the fermentation medium and condition for the anti-Vibrio
metabolite production in the genus Streptomyces. The 
limited findings on the bioactive compounds with anti-
Vibrio activity from Streptomyces sp. suggesting that 
more studies should focus on identifying the potential 
bioactive compounds that specifically against Vibrio sp. 
Taken together, with optimal fermentation conditions 
and appropriate extraction techniques, future development 
of clinically important drugs is warranted from these 
Streptomyces sp. to treat infections inflicted by 
Vibrio pathogens.
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