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Abstract: Streptomyces are a distinguished group of gram-positive bacteria mostly acknowledged for their immense con-
tribution to life-saving drugs and lines of compounds with diverse bioactivities.  To date, there remains limited studies on 
Streptomyces with biological activities residing in underexplored ecosystems such as the mangrove forests. For this purpose, 
the present work aimed at investigating the biological activity of Streptomyces sp. MUSC 11 collected from soil sample in 
mangrove forests, situated in the State of Pahang, Peninsular of Malaysia. The cultured strain resembled phenotypic and 
genotypic traits of genus Streptomyces. Investigations of the methanolic extract from Streptomyces sp. MUSC 11 revealed 
antioxidant activities in form of scavenging free radicals ABTS, DPPH, chelating iron and reducing ferric iron. Besides 
the antioxidant tests, antioxidant results corresponded well to the presence of phenolic content. In summary, Streptomyces 
derived from extreme and understudied ecosystem such as the mangrove forests are potential sources of biologically active 
and therapeutically useful compounds.    
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Introduction

The mangrove ecosystem makes up nearly 75 % of 
coastal margin in tropical and subtropical countries[1]. 
For centuries, they attracted significant attention, due to 
the unusual physiognomy of the trees and shrubs that re-
side therein. To date, much of what is known about the 
mangrove forests, stem from studies of macro-biodiver-
sity-the flora and fauna; and, to a smaller extent, the mi-
cro-biodiversity[2,3]. Nevertheless, microbes are crucial to 

the conservation of mangrove forest, tasked with fixing 
nitrogen and sequestering carbon, they confer fitness to 
trees which are rooted in nutrient-poor, waterlogged, sa-
line and mostly acidic soil[2]. 

Over the years, the rich chemical diversity generated in 
nature has become a minefield for natural product drug 
discovery researchers, who are constantly in search 
for better alternative drugs[4-13]. There is mounting evi-
dence supporting the growing interest in microbes in 
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underexplored habitats such as mangroves, as sources 
of biologically active compounds[14-16]. For instance, the 
review by Ancheeva and colleagues highlighted  that 
between the years of 2014 and 2018, 163 compounds 
isolated mostly from mangrove-derived fungi, exhibit-
ed potent anti-cancer, antimicrobial, anti-inflammatory, 
cholesterol lowering and α-glucosidase activity[17]. Also, 
from year 2000 and onwards, microbial natural prod-
ucts, particular from bacteria, have accounted for 8.9 % 
of all the Food and Drug Administration-approved new 
molecular entity (NME) compared to 5.6 % that make 
up plant-based FDA-approved NME [18]. Given the scar-
city of studies conducted on mangrove-derived bacteria 
such as Streptomyces for biologically active compounds, 
has prompted investigations thereof [19-23]. Streptomy-
ces are gram-positive bacteria classified as a genus of 
the Actinobacteria phylum[24, 25]. Since the discovery of 
streptomycin from Streptomyces[26], they continue to 
feature among the most prominent drug-producing mi-
crobes[27-30]. Presently, Streptomyces are by far, the larg-
est microbial genus studied[31,32] and hailed as prolific 
producers of more than 7600 bioactive compounds[33,34]. 
More recently, fewer new biologically active compounds 
have been reported from Streptomyces[35]. It is hoped that 
venturing into understudied ecological niches such as the 
mangrove forest, will identify underreported Streptomy-
ces with rare metabolic pathways capable of producing 
biologically active metabolites[36-38].  

Malaysia is home to the second largest mangrove forest 
in the South-East Asia region[39]. Much of the mangrove 
region in Malaysia are yet to be investigated for poten-
tial Streptomyces with biologically active compounds. 
Several published works have found that mangrove soil 
in Malaysia contain rare Streptomyces with wide spec-
trum of biological activities[40-47]. In this view, the present 
work sampled mangrove soil in Malaysia and further iso-
lated and studied Streptomyces sp. MUSC 11 specifically 
for its antioxidant capability. Methanolic extracts from 
Streptomyces sp. MUSC 11 showed antioxidant activity 
against free radicals ABTS, DPPH, ferrous iron and also 
exerted ferric reduction power. In addition, the study es-
tablished the fact that the antioxidant activities are partly 
caused by the presence of phenolic compounds. Overall, 
the study suggests Streptomyces sp. MUSC 11 to be a re-
liable producer of antioxidant metabolites and warrants 
further investigations. 

Materials and Methods

Sampling, isolation and maintenance of Streptomyces 
sp. MUSC 11

The mangrove soil – derived strain was collected in 
Tanjung Lumpur, Malaysia in December, 2012 (MUSC-
TLS4 3°48’21.3” N 103°20’3.3”E). The pure cultures of 
Streptomyces sp. MUSC 11 were obtained through initial 
heat-treatment followed by suppression of non-Strepto-
myces microbes through use of anti-fungal drugs and se-
ries of sub - cultures. They were maintained on ISP2 agar 
slant at 28°C and glycerol stocks (30% v/v) at - 80°C for 
shorter and longer storage time, respectively[48,49].

Genomic DNA extraction and phylogenetic 
analysis of Streptomyces sp. MUSC 11

The genomic DNA (gDNA) content was isolated for the 
purpose of amplifying the 16S rRNA gene region as de-
tailed by the methods of Hong et al and Lee et al., re-
spectively[43,50].  The 16S rRNA gene sequence that was 
eventually acquired was entered into GenBank/ EMBL/ 
DDBJ database to obtain several type strains that shared 
the closest relationship with Streptomyces sp. MUSC 11. 
Alignment of the 16S rRNA gene sequences for these 
Streptomyces type strains was carefully performed in 
CLUSTAL - x software[51]Julie D. Stability of generated 
phylogenetic tree was checked by bootstrap based on 
1000 resampling method[56].

Phenotypic characterization of Streptomyces sp. 
MUSC 11

Cultural characteristics of a 7 - 14 days old Streptomyces 
sp. MUSC 11 grown at 28 °C, was assessed on different 
culture growth media - International Streptomyces Project 
(ISP) 2, ISP3, ISP4, ISP5, ISP6, ISP7[57], Streptomyces 
agar (SA)[58], Nutrient agar (NA)[59], Actinomycete iso-
lation agar (AIA)[60] and starch casein agar (SCA)[61]. Its 
ability to produce soluble pigment as well as the colony 
colour on each growth media were taken note of[62]. Aside 
from assessing cultural characteristics, Streptomyces sp. 
MUSC 11 was also exposed to varying degrees of tem-
perature (4 – 50 °C), salinity (0 – 10 % w/v), pH (2 - 10). 
This was done to determine the optimum growth condi-
tion of Streptomyces sp. MUSC 11. Additional biochemi-
cal tests carried out, were to investigate Streptomyces sp. 
MUSC 11 as capable of producing a number of extracel-
lular enzymes. To determine the presence of catalase, a 
drop of 3 % (v/v) hydrogen peroxide was added to the 
culture of Streptomyces sp. MUSC 11. The production of 
bubbles suggested presence of catalase[63]. The potential 
of Streptomyces sp. MUSC 11 to induce hemolysis was 
further tested on a 5 - day old culture grown on blood 
agar media with ingredients 5 % (w/v) peptone, 3 % (w/v) 
yeast extract, 5 % (w/v) NaCl and 5 % (v/v) human blood. 
A clear zone of inhibition around the 5 day culture, de-
note haemolysis and surfactant property of the culture[64]. 
By growing culture on ISP 2 media, the presence of chi-
tinase, xylanase, amylase, protease, lipase and cellulose 
were also established[65].

Fermentation process and extract preparation 

Seed culture of Streptomyces sp. MUSC 11 was prepared 
in a volume of 10 mL by growing in nutrient – rich TSB 
media for 10 days at 28 °C with aeration rate of 220 rpm. 
Afterwards, an aliquot of seed media containing Strep-
tomyces sp. MUSC 11, was transferred to freshly made, 
sterile HFM media and incubated under same culture con-
dition. The cell - free supernatant was later collected after 
centrifugation, filtration and freeze - drying were com-
pleted[43]. Methanol was selected as the organic solvent 
for extracting secondary metabolites of the freeze - dried 
supernatant. Filtrate was then evaporated to dryness by 
use of rotary evaporator and dried crude methanolic ex-
tract was stored at – 20 °C for future use[48] .
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Ferric reducing activity

The ferric reducing antioxidant power (FRAP) assay 
was conducted following Adjimani and Asare [67] meth-
od with some modification. In brief, a series of 2 - fold 
concentration of methanolic extract MUSC 11 were pre-
pared in volumes of 25 µL. In subsequent steps, 25 µL 
phosphate buffer (0.2 M) and 25 µL (1 %) of K3Fe(CN)6 
were added into each of the 1.5 mL microcentrifuge 
tubes containing extracts, followed by heating at 50 °C 
for 20 minutes before leaving it to cool to room tem-
perature. A 25 µL of TCA (10 %) was thereafter added 
which ended the reaction. From this mixture, 80 µL was 
removed and added into wells in 96 well plate with 20 
µL of FeCl3. The absorbance reading at 700 nm was re-
corded and presented in terms of the ascorbic acid dose 
equivalents.  

Assessing the total phenolic content of extract

The total phenolic content (TPC) of the methanolic 
extract of MUSC 11 were determined following the 
method of Tan et al.[66]. A series of concentrations of the 
extract at 10 µL each were prepared and added into 96 
well. A 50 µL of Folin - Ciocalteu’s Reagent (1:10) was 
later transferred into individual wells and incubated in 
the dark for 5 minutes at room temperature. Addition of 
40 µL of sodium carbonate (NaCO3) at 7.5% was made 
to the wells containing extract to react with for another 
30 minutes at room temperature. The absorbance was 
measured at UV wavelength of 750 nm. Results of ab-
sorbance reading were presented in terms of Gallic acid 
equivalents.  

Gas chromatography-mass spectroscopy (GC-
MS) chemical profiling of extract 

The profiling of chemical constituents in the methanolic 
extract of Streptomyces sp. MUSC 11 was done as ex-
plained in detail in another study[68]. Briefly, chemical 
profiling was achieved by use of Agilent Technologies 
6980N with a 5979 Mass Selective Detector and a HP-
5MS (5 % phenyl methyl siloxane) capillary column of 
dimensions 30.0 m x 250 µm x 0.25 µm as a helium 
gas carrier (1 mL/min). Temperature was raised to 40 
°C for 10 minutes; then, increased by 3 °C every min-
ute until maximum temperature of 250 °C was reached 
whilst keeping peak temperature constant for another 5 
minutes. MS was operational at 70 eV. Individual con-
stituents that were detected by GC-MS had their identity 
verified by comparing their mass spectral data with ref-
erence compounds from NIST 05 spectral Library.

Statistical analysis 

All antioxidant tests were repeated thrice and results ex-
pressed in means ± standard deviation (SD). Statistical 
Package for the Social Sciences software (SPSS) was 
used to analyse the antioxidant assays. One-way analy-
sis of variance (ANOVA) and Tukey’s post hoc was used 
to determine the statistical significance with a p-value < 
0.05. The Pearson’s correlation in SPSS software was 
employed to ascertain whether the antioxidant effect of 
methanolic extract of MUSC 11 were partly due to the 
phenolic compounds present therein.

Antioxidant assays of methanolic extract MUSC 
11

ABTS radical scavenging activity 

The radical scavenging activity of the methanolic extract  
was examined  in accordance with method of Tan et al. 
[66]. Briefly, the reagent, 2, 20-azino-bis (3-ethylbenzo-
thiazoline-6-sulfonic acid) (ABTS) was used to generate 
ABTS radical ion (ABTS•+). This was achieved by adding 
together ABTS and potassium persulfate at a concentration 
of 7 mM and 2.45 mM, respectively. The resultant ABTS 
free radical solution was then allowed to react with differ-
ent concentration of methanolic extract MUSC 11, in a 96 
well plate, in dark, for 20 minutes. Gallic acid served as the 
standard for this experiment. The antioxidant activity was 
evaluated by taking the absorbance reading at 734 nm. The 
formula for calculating the percentage (%) of ABTS radi-
cal scavenging activity is as follows : 

DPPH radical scavenging activity

The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scav-
enging activity was carried out in accordance to previous 
method stated elsewhere[66]. A solution of pre-made DPPH 
(0.016 % w/v) dissolved in ethanol (95 % v/v) was added 
into 96 well plates containing different concentrations of 
methanolic extract and left standing for 20 minutes, in dark 
at room temperature. The absorbance for each reaction well 
was recorded at 515 nm. Gallic acid was the standard used 
for this test.  The formula for calculating the percentage 
(%) of DPPH radical scavenging activity is given below :

Metal chelating activity 

The ability of the methanolic extracts of Streptomyces sp. 
MUSC 11 to chelate iron was investigated following the 
method of Adjimani and Asare[67].  The ferrozine (5 mM) 
was allowed to react with ferrous sulfate (FeSO4) 2 mM 
in 96 well plate for 10 minutes. The metal chelating ac-
tivity takes into account the free ferrous ion in the reac-
tion mixture by measuring the absorbance at 562nm. Eth-
ylenediamine tetraacetic acid (EDTA) was treated as the 
positive control for this experiment. The following formula 
was used to calculate the percentage (%) of metal chelating 
activity :

                                                                                                                                                                                 Kemung HM et al.

×100%

% of DPPH radical scavenging activity

                         Absorbance of control – absorbance of sample
                     =   –––––––––––––––––––––––––––––––––––––
                                     Absorbance of control 

×100%

% ABTS scavenging activity

                         Absorbance of control – absorbance of sample
                     =   –––––––––––––––––––––––––––––––––––––
                                     Absorbance of control 

×100%

% of Metal chelating activity

                         Absorbance of control – absorbance of sample
                     =   –––––––––––––––––––––––––––––––––––––
                                     Absorbance of control 
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Results 

Genomic and phylogenetic analysis of Streptomyces 
sp. MUSC 11

The 1492 bp 16S rRNA gene sequence of Streptomyces 
sp. MUSC 11 (GenBank accession number MN199671) 
isolated from gDNA assisted in the process of accessing 
the 16S rRNA nucleotide sequences of closely related 
type strains from GenBank/EMBL/DDBJ database and 

were confirmed for all media grown, except ISP4.  Produc-
tion of soluble pigments was not observed in any of the 
tested media (Table 1). Optimal growth was observed at 
temperature of 26 – 28 °C, pH of 7 and salinity of 2 % w/v. 
Streptomyces sp. MUSC 11 was tested positive for cata-
lase. Moreover, it was able to hydrolyse starch, casein and 
carboxymethylcellulose. In the case of xylan, Streptomyces 
sp. MUSC 11 was only able to hydrolyse to some extent, 
as shown in Table 2.

subsequently aligned manually. The phylogenetic tree of 
Streptomyces sp. MUSC 11 is pictured in Figure 1. Based 
on the phylogenetic tree constructed, the closest relations 
were Streptomyces thermocarboxydus DSM 44293T, Strep-
tomyces indiaensis NBRC 13964T and Streptomyces mas-
sasporeus NBRC 12796T. Interestingly, both Streptomyces 
thermocarboxydus DSM 44293T and Streptomyces massa-
sporeus NBRC 12796T displayed the closest 16S rRNA gene 
sequence similarity of 99.96 % proceeded by Streptomyces 
indiaensis NBRC 13964T with 99.31 %.

Phenotypic characterization of Streptomyces 
sp. MUSC 11

The growth of Streptomyces sp. MUSC 11 on various 
media is shown in Table 1. Streptomyces sp. MUSC 
11 showed preference to grow on ISP 2, ISP5, ISP6, 
ISP7 and SCA and SA after 7-14 days at 28 °C. This 
is in agreement by Gottlieb and Shirling who recom-
mend ISP media for the growth of Streptomyces[57]. 
Colony colour of both the aerial and substrate mycelia 

Figure 1. Neighbour-joining phylogenetic tree based on 1492 nucleotides of 16S rRNA gene sequence of Streptomyces sp. MUSC 11 and closely related type strains. Num-

bers and nodes indicate percentages (>50%) of 1000 bootstrap re-sampling. Bar, 0.001 substitutions per site. 

Table 1. Cultural characteristics of Streptomyces sp. MUSC 11

Media Growth Colony colour Soluble pigments
Aerial mycelia Substrate mycelia

ISP 2 Well Light Yellow Brilliant Yellow -
ISP 3 Poor Yellowish White Yellowish  White -
ISP 4 No growth - - -
ISP 5 Well Dark Olive Brown Dark Greyish  Olive -
ISP 6 Well Greenish Yellow Brilliant Yellow -
ISP 7 Well Dark Greyish Yellow Dark Olive Brown -
AIA Moderate Yellowish White Yellowish  White -
SCA Well Yellowish Grey Pale  Greenish Yellow -
SA Well Pale Yellow  Light Yellow -
NA Moderate Pinkish Grey Moderate Olive -

Key: -: No growth on ISP 4 and no production of soluble pigment
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methanolic extract MUSC 11 was undertaken by mea-
suring absorbance of free DPPH radical at 515 nm. A 
low absorbance reading implied stronger antioxidant. 
The result of this experiment demonstrated the DPPH 
radical scavenging potential of methanolic extract 
MUSC 11 with an activity (p < 0.05) of 7.27 ± 4.73 % at 
its highest concentration of 4 mg/mL (Table 3).

Metal chelating assay antioxidant assay

In this experiment, the ferrozine reagent was used to de-
termine the ability of methanolic extract MUSC 11 to 
chelate ferrous ion (Fe2+). The metal chelating potential 
of the methanolic extract MUSC 11 was evaluated by 
measuring the absorbance of ferrous -ferrozine complex 
formed at 562 nm. A low absorbance reading suggested 
most of the complex formed were between the ferrous 
ion and the metabolites present in the methanolic extract 
MUSC 11. The result of this study indicated that metha-
nolic extract MUSC 11 had metal chelating activity (p < 
0.05) of 21.61 ± 1.71 % at 4 mg/mL (Table 3).

ABTS radical scavenging antioxidant assay

The ABTS radical scavenging assay was performed to ex-
amine whether methanolic extract MUSC 11 was able to 
scavenge ABTS radical cation. The ABTS radical cation 
was mixed with methanolic extract MUSC 11. A colour 
change from blue - green to colourless was observed sug-
gesting ABTS scavenging activity. The absorbance reading 
of free ABTS radical was taken at 734 nm. The result of 
this experiment showed a concentration dependent ABTS 
radical scavenging activity (p < 0.05) with the highest mea-
sured at 4 mg/mL (Table 3). 

DPPH radical scavenging antioxidant assay

The DPPH radical scavenging assay was used to determine 
the potential of microbial metabolites to scavenge free 
DPPH radical. The noteworthy colour change from purple 
(DPPH radical) to yellow (diphenylpicrylhydrazine) in the 
reaction mixture, indicated DPPH radical scavenging ac-
tivity. Quantitative analysis of the antioxidant activity of 
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Table 2. Biochemical and physiological characteristics of Streptomyces sp. MUSC 11

Catalase +
Haemolytic -
Enzymatic test
Chitinase activity (2.5 % chitin) -
Xylanase activity (0.5 % xylan) (+)
Amylolytic activity (0.2 % starch) +
Protease activity (2 % casein) +
Lipase activity (1 % tributyrin) -
Cellulase activity (0.5 % CMC) +
Temperature
Growth 26 - 50
Optimum 26 - 28
NaCl (%) tolerance
Growth 0 - 6
Optimum 2
pH tolerance
Growth 6 - 7
Optimum 7

Key: +: Activity; (+): Moderate activity; -: No activity

Table 3. The antioxidant activities of Streptomyces sp. MUSC 11 at different antioxidant assays.

Concentration (mg/mL) Antioxidant activities (%)
DPPH radical scavenging ac-
tivity (%)

ABTS radical scavenging ac-
tivity (%)

Metal chelating activity (%)

0.125 ND¥ 3.23 ± 1.16* 8.55 ± 2.39*
0.25 ND¥ 5.69 ± 1.53* 6.68 ± 2.69*
0.5 0.39 ± 0.96* 5.66 ± 0.87* 8.22 ± 2.95*
1 1.22 ± 1.24* 8.46 ± 1.27* 9.73 ± 1.02*
2 7.58 ± 1.55* 16.23 ± 0.64* 14.38 ± 6.13*
4 7.27 ± 4.73* 31.42 ± 1.00* 21.61 ± 1.71*

*Statistically significant at p < 0.05; ¥ ND: Not detected
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The ferric reducing antioxidant power (FRAP) 
assay

The potential of methanolic extract MUSC 11 to reduce 
iron in the ferric form (Fe3+) to its ferrous (Fe2+) form was 
assessed through the FRAP assay. The amount of ferric-
ferrous ion complex was determined by measuring the ab-
sorbance of 700 nm. Visible colour change to Prussian blue 
was observed indicating the reducing power of methanolic 
extract. The result from the absorbance reading showed 
that methanolic extract MUSC 11 absorbance was 1.02 - 
1.12, in the dose range of 1 - 2 mg, equivalent to 3.001 ng 
-3.521 ng of ascorbic acid (Figure 2).

Investigating the antioxidant...       

Figure 2. Ferric reducing activity of methanolic extract of Streptomyces sp. MUSC 11 

Table 4. Total phenolic content of methanolic extract of Streptomyces sp. MUSC 11

Antioxidant activities Phenolic content

ABTS  radical scavenging activity r = 0.985*
DPPH radical scavenging activity r = 0.897*
Metal-chelating activity r = 0.974*

*Correlation is significant at the 0.05 level.

GC-MS analysis

Chemical profiling of the various constituents contained in 
the methanolic extract MUSC 11 was attained through the 
use of GC-MS together with the mass spectral data provided 
by the NIST library. From this, 11 compounds belonging to 
alcohols, phenols, esters, fatty acids, peptidyl nucleosides, 
cyclic dipeptides and aminoglycoside were identified.  De-
tailed information of individual compounds including their 
chemical structures are provided in Table 5 and Figure 4, 
respectively.

Table 5. Compounds present in the methanolic extract of and detected by GC-MS 

No. Constituents Retention time (min) Molecular Formula Molecular weight Similarity (%)

1 Benzenemethanol,2-(2-aminopropoxy)-3-methyl- 3.864 C11H17NO2 195 98.4

2 L-Proline,5-oxo-,methyl ester 39.876 C6H9NO3 143 81.9

3 Phenol, 2,4-bis(1,1-dimethylethyl)- 44.828 C14H22O 206 88.6

4 Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)-
1,4-dideoxy-4-(D-2-(2-(methylamino)acetamido)hydracryl-
amido)-, beta-D-

54.159 C16H25N7O8 443 92.3

5 Tetradecanoic acid, 12 methyl-, methyl ester 55.145 C16H32O2 256 91.5

6 Pyrrolo [1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)- 55.893 C11H18N2O2 210 91.6

7 Oleic acid 56.359 C18H34O2 282 92

8 2-Bromotetradecanoic acid 56.771 C14H27BrO2 307 93.1

9 n-hexadecanoic acid 59.458 C16H32O2 256 91

10 D-Streptamine, O-2-amino-2-deoxy-alpha-D-glucopyrano-
syl-(1-4)-O-(O-2,6-diamino-2,6-dideoxy-beta-L-idopyrano-
syl-(1-3)-beta-D-ribofuranosyl-(1-5))-2-deoxy-

72.550 C23H45N5O14 615 95.1

11 Dasycarpidan-1-methanol, acetate (ester) 77.633 C20H26N2O2 326 87.1

Assessment of the Total phenolic content 

The presence of phenolic compounds in the methanolic 
extract MUSC 11 was confirmed by the Folin -Ciocal-
teu’s method and is positively associated with a colour 
change from yellow to blue. Based on this experiment, 
the intensity of blue colour observed was concentration 
dependent. To ascertain the relationship between the 
antioxidant activities and phenolic content in methano-
lic extract MUSC 11, an additional correlation analy-
sis was undertaken. As shown in Table 4, the Pearson’s 
correlation analysis revealed a strong relationship (r = 
0.90 - 0.99, p > 0.05) between the antioxidant activities 
(ABTS, DPPH and metal chelation) and phenolic con-
tent of methanolic extract MUSC 11. 
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lished between Streptomyces thermocarboxydus DSM 
44293T (99.96%), Streptomyces massasporeus NBRC 
12796T (AB184152) (99.93%) and Streptomyces indi-
aensis NBRC 13964T (99.31%). Meanwhile, the pheno-
typic characteristics show that it was able to grow on all 
culture media with the exception of ISP 4. Furthermore, 
colony colour was visible on all media excluding ISP 
4 (Table 1). The strain was unable to produce soluble 
pigment. It preferred to grow in an optimal temperature 
range, salinity and pH of 26 – 28 ºC, 2 and 7 respec-
tively. Biochemical tests revealed the strain potential in 
producing catalase, xylanase, protease, amylase and cel-
lulase (Table 2).

Aerobic respiration is undoubtedly one of the most fun-
damental life processes, in which ~90% inhaled oxygen 
molecule (O2) is transported into cytoplasmic mitochon-
dria[80] and participate in the reduction-oxidation (redox) 
reaction generating much of the energy-rich ATPs and 
water molecule. A by-product of the aforesaid reaction 
is the free radical reactive oxygen species (ROS).  In ho-
meostasis, ROS essentially function as intracellular and 
intercellular signalling molecules modulating cellular 
responses[81-83]. Considerable changes in ROS levels can 
potentially disrupt cellular functions and effects are re-
versed by the actions of respiratory enzymes, that assist 
in quenching ROS[84].Oxidative stress results from an 
overproduction of ROS with relatively low amounts of 
the antioxidant to defend the body from harmful effects 
of ROS[85]. It has been known that increased levels of 
ROS are dangerous as they tend to cause dysregulation 
of many cellular components involved in pathogenesis 
of several diseases[86-89]. Under such pathological states, 
synthetic or nature-based antioxidants are taken with the 
intent to reduce high levels of ROS. Evidence from ear-
lier animal studies have noted synthetic antioxidants as 
potentially unsafe for human consumption, since higher 
doses and prolonged exposure can induce carcinogene-
sis[90,91]. Nowadays, industries prefer searching for safer 
and better antioxidant remedies among natural sources 
by utilizing variety of antioxidant assays[92-94] 

Discussion

Mangrove forest has emerged as a rich store of chemically 
diverse natural products[17] - any small molecules produced 
by living organisms[18,69]. Strategically positioned between 
terrestrial and marine ecosystem, mangrove forest repre-
sents a rare habitat of living organisms capable of thriv-
ing in extreme environmental conditions – saline, acidic 
and fluctuating tides[70]. The mangrove habitat is a treasure 
trove of microbes, residing mostly in the sediment[71] and in 
terms of their biotechnological significance, remain largely 
understudied.

The filamentous, aerobic, soil-dwelling, gram-positive 
Streptomyces bacteria[24] have been found residing in soil 
samples collected from many countries[72-76]. The tradition-
al practice regarding the isolation of Streptomyces from 
soil samples, have over the years resulted in the rediscov-
ery of compounds which slowly exhausted the supplies of 
new compounds. It has been suggested that understudied 
ecosystem hold Streptomyces species which can meet the 
growing demand of drug discovery and development in-
dustry[77]. Researchers who made an effort to study Strep-
tomyces from less explored ecosystems such as mangrove 
forest were able to discover novel Streptomyces species 
and Streptomyces strains showing potent antioxidant ac-
tivities[40,42,66,68,78,79]. 

In this study, Streptomyces sp. MUSC 11 with a 1492bp 
16R rRNA gene sequence was isolated from mangrove soil 
in Tanjung Lumpur, Malaysia. The 16S rRNA sequence 
was manually aligned to an assembly of closely related 
member type strains accessed through the NCBI GenBank 
repository. Their 16S rRNA gene sequence similarities 
were determined by comparing them individually against 
the 16S rRNA gene sequence of Streptomyces sp. MUSC 
11. Upon construction of the phylogenetic trees, it was 
found that Streptomyces thermocarboxydus DSM 44293T, 
Streptomyces indiaensis NBRC 13964T and Streptomyces 
massasporeus NBRC 12796T (AB184152) shared closest 
relations. Highest 16S rRNA gene sequence was estab-
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Figure 3. Chemical structures of 11 compounds that were present in the methanolic extract of Streptomyces sp. MUSC 11 and detected by GC-MS. 



8

dards for potential match. Nowadays, GC-MS coupled 
with NIST mass spectral library is extensively used 
for determining the bioactive constituents in micro-
bial extracts[42,68,79]. In this experiment, 11 compounds 
were detected  in the methanolic extract MUSC 11: 
Benzenemethanol,2-(2-aminopropoxy)-3-methyl- (1), 
L-Proline,5-oxo-,methyl ester (2), Phenol, 2,4-bis(1,1-
dimethylethyl)- (3), Glucopyranuronamide, 1-(4-ami-
no-2-oxo-1(2H)-pyrimidinyl)-1,4-dideoxy-4-(D-2-
(2-(methylamino) acetamido) hydracrylamido) -, 
beta-D- (4), Tetradecanoic acid, 12 methyl-, methyl ester 
(5), Pyrrolo [1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-
methylpropyl)- (6), Oleic acid (7), 2-Bromotetradeca-
noic acid (8), n-hexadecanoic acid (9), D-Streptamine, 
O-2-amino-2-deoxy-alpha-D-glucopyranosyl-(1-4)-
O-(O-2,6-diamino-2,6-dideoxy-beta-L-idopyrano-
syl-(1-3)-beta-D-ribofuranosyl-(1-5))-2-deoxy- (10) 
and Dasycarpidan-1-methanol, acetate (ester) (11).

Interestingly 11 compounds were detected by GC-MS in 
the microbial crude extract MUSC 11 with wide ranging 
biological activities. For instance, traces of compound 
(1) found in the methanolic extract of Candida albi-
cans[101] and Acinetobacter baumannii[102] had antibac-
terial and antifungal activities, respectively. Methanolic 
extract from endophytic fungi Xylaria sp. containing 
compound (2) displayed strong antioxidant activity in 
the form of scavenging DPPH radicals[103]. Present in the 
methanolic extract MUSC 11 were also fatty acids- a 
straight chain (9) and a halogenated fatty acid (8). The 
palmitic acid (9) was detected as one of the 3 princi-
pal compounds from Streptomyces sp. ECR77 extract 
giving rise to the anti -bacterial effect on several fish 
pathogens[104]  A halogenated form of the 14-carbon fatty 
acid (8) was produced by fungus Aspergillus niger[105] 
and  Saccharomyces cerievisiae[106] with antimicrobial 
activities. Compound (11) was previously reported from 
Pseudomonas aerigunosa as having activities against 
Aspergillus fumigatus[107]. 

Phenolic compounds constitute hydroxyl functional 
groups attached to aromatic compounds[108]. The lower 
bond dissociation energy (BDE) between hydroxyl func-
tional group, renders hydrogen a good leaving group, 
and, the parent compound -phenolic compounds – over-
all, as good scavengers of ROS[109,110]. Given that pheno-
lic compounds are good antioxidants, the total phenolic 
content of methanolic extract MUSC 11 was investi-
gated. The results of this study indeed showed a strong 
correlation (p < 0.05) between the methanolic extract 
and phenolic content, suggesting the antioxidant activi-
ties was possibly due to presence of such constituents 
(Table 4). Further information on the nature of phenolic 
compound (3) was provided by the GC - MS analysis 
(Table 5 and Figure 3). Studies of Streptomyces involv-
ing antioxidant on numerous occasions have mentioned 
the detection phenolic compounds including compound 
(3)[41,42,48,66,68,79,111]. Hence, compound (3) was perceived 
to have caused the antioxidant activity to some extent, 
provided the contribution may have also come from oth-
er constituent in methanolic extract MUSC 11.  

Bioactive pyrrolopyrazines have been previously recov-
ered from microbial fermentation. For example, Azman 

Individual antioxidant assays have their own limitations 
and are therefore not representative of the antioxidant po-
tential of a given extract[95]. For this reason, multiple anti-
oxidant assays were taken into consideration to determine 
the antioxidant capacity of the methanolic extract MUSC 
11. In fact, two of the known antioxidant methods were 
covered in this paper. The first method was based on the 
principle of scavenging preformed ROS (ABTS/ DPPH/ 
metal chelation)[95] whereas the second method considered 
the reduction power of antioxidants (ferric-reducing activ-
ity)[96]. In the experiment, ABTS and DPPH were generated 
as free radicals and later exposed to series of concentration 
from the methanolic extract MUSC 11. The measure of the 
antioxidant activity towards ABTS and DPPH were deter-
mined by the lending of hydrogen atom from constituents 
present in the methanolic extract in the process of hydro-
gen atom transfer (HAT)[95] thereby terminating free radical 
damaging effects. Both ABTS and DPPH are commonly 
employed to assess the antioxidant capacity of microbial 
extract [42, 66]. In this experiment, the methanolic extract ex-
hibited ABTS radicals scavenging activity in the magni-
tude of 31.42 ± 1.00 % at 4 mg/mL. In the meantime, the 
result of DPPH radical scavenging was 7.27 ± 4.73 % at its 
highest concentration tested.

ROS such as superoxide anion radical (O2•
-) formed main-

ly from the reduction of O2 molecule in mitochondria, 
can be further reduced to hydrogen peroxide[97] and used 
in Fenton reaction[98] to form hydroxyl radical. Therefore, 
any substrate that readily scavenges ROS can be of great 
therapeutic value. Transition metals such as iron found nor-
mally in cytoplasm in ferrous form (Fe2+), appear to act 
as catalyst in the production of ROS[98]. In the presence of 
excess iron, Fenton reaction is enhanced resulting in the 
accumulation of circulating ROS. Based on previous stud-
ies, various researchers have demonstrated microbial me-
tabolites as good antiradical agents[66,99,100] in reducing Fe2+ 
concentration and diminish ROS supplies. In this study, the 
metal chelating ability of the methanolic extract 11 was 
evaluated. The result (p < 0.05) showed methanolic extract 
was able to chelate 21.61 ± 1.17% of Fe2+ in the reaction 
mixture at the highest concentration tested (Table 3).

The reducing power of methanolic extract was tested us-
ing the ferric reducing assay. In this particular assay, the 
methanolic extract MUSC 11 and Fe3+ would simultane-
ously undergo oxidation (losing of electrons) and reduc-
tion (gaining of electrons), respectively. The basis of the in 
vitro ferric reducing activity was to assess the ability of the 
methanolic extract MUSC 11 to reduce Fe3+ ion to its Fe2+ 
form[67]. In the initial stage of the actual experiment, potas-
sium ferricyanide reacted with methanolic extract which 
yielded a reduced ferrocyanide and a favourable oxidised 
methanolic extract MUSC 11[96]. Towards the end of the 
experiment, the ferrocyanide was reacted with ferric chlo-
ride forming a Prussian blue Fe3+ - Fe2+ complex. The ferric 
reducing activity (p < 0.05) was expressed as 1 - 2 mg of 
methanolic extract MUSC 11 which is equivalent to 3.521 
– 3.001 ng of ascorbic acid. 

Individual compounds are designated specific GC-MS 
retention time and molecular ion charges (m/z) which 
are subsequently introduced into large computer-gener-
ated databases and comparatively analysed with stan-

Investigating the antioxidant...       
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