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Abstract:  In this study, we have demonstrated an automated workflow by using KNIME Analytical Platform for modelling 
and predicting potential HIV-1 protease (HIVP) inhibitors. The workflow has been simplified in three easy steps i.e., 1) re-
trieve the database of inhibitors for the target disease from ChEMBL website and well-known drug from DrugBank database, 
2) generate the descriptors and, 3) select the optimal number of features after machine learning models training. Our results 
have indicated that the random forest with auto prediction validation method is the most reliable with the best R2 value of 
0.9394. Apparently, this workflow can be transformed easily for any other diseases and the quantitative structure-activity 
relationship (QSAR) model that has been developed can accurately predict in silico how chemical modifications might influ-
ence biological behaviour. Overall, the automated workflow which has been presented in this study may significantly reduce 
the time, cost and efforts needed to design or develop potential HIVP inhibitors. 
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Introduction

The Human immunodeficiency virus type 1 (HIV-1), has 
been distinguished as a crucial agent which contributes to 
the most life-threatening disease, Acquired immunodefi-
ciency syndrome (AIDS)[1]. AIDS is considered as one of 
the greatest public health and social problems threatening 
the human race which can be transmitted through various 
ways i.e., unprotected sexual activities, blood donations 
without laboratory tests and from mother to children. Ac-
cording to the “The Joint United Nations Programme on 
HIV/AIDS (UNAIDS)”, there were approximately 36.9 
million people worldwide living with HIV/AIDS globally 
in 2017[2]. In 2018, approximately 43% are women and 
there were about 940,000 deaths from AIDS in 2017[2]. 
Moreover, the UNAIDS is committed to end the public 
health threat of the global HIV epidemic by 2030[3]. To 
achieve this aim, an estimated budget of US$ 26.2 billion 
will be required for the HIV response in 2020, which may 
gradually reduce to $22.3 billion by 2030[4].

Studies have shown that the life cycle of the HIV-1 is truly 
depends on the key enzyme, HIV-1 protease (HIVP)[5, 6]. 

HIVP cleaves Gag and Gag-Pol polyprotein precursor 
encoded by the HIV-1 virus genome at nine processing 
sites to produce mature active proteins[6]. However, the 
HIVP enzyme activity can be inhibited by blocking the 
active site of the enzyme by protease inhibitors[6], which 
results in the release of structurally disorganized and 
non-infectious viral particles[7]. Therefore, inhibition 
of HIVP is considered among the most important ap-
proaches for the therapeutic intervention in HIV infec-
tion[8]. 

Although there is currently exists no treatment to eradi-
cate the virus from an infected patient, a range of medi-
cations can control the condition. To date, 26 anti-HIV 
compounds have been approved by the Food and Drug 
Administration (FDA)[9], in which 10 are HIV protease 
inhibitors[10]. Nevertheless, the treatment of HIV with 
the FDA-approved drugs is only effective in reducing 
viral replication, and HIV rapidly gains resistance to all 
known agents[11]. Hence, there is an urge to look for new 
drugs to treat the current disease.

Recently, huge amount of experimental data which aids 
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researchers throughout the drug discovery process be-
come available through open-source websites such as 
ChEMBL (https://www.ebi.ac.uk/chembl/)[12]. However, 
flexible analysis of data and the development of scripts 
which are specific to each project require high skills in 
software engineering. To overcome this issue, workflow 
environments[13] such as Pipeline Pilot[14], Taverna[15], 
Kepler[16], Galaxy[17], Loni Pipeline[18] and KNIME 
(Konstanz Information Miner)[14, 19] have been emerged 
for flexible and easy data analysis. In this study, KNIME 
Analytical Platform will be explored to develop an auto-
mated workflow for HIVP inhibitors database and clus-
tering analysis. The quantitative structure-activity rela-
tionship (QSAR) model from this workflow can be used 
to automatically predict the compound activities. Hence, 
the process of drug discovery against HIVP target is ex-
pected to be simplified by the help of automated com-
pound activity prediction. 

Method details

Materials

Softwares & databases (ChEMBL, DrugBank, KNIME 
Analytics Platform and RDKit)

Procedure

Data processing for this study was conducted using the 
KNIME Analytics Platform (https://www.knime.com/), 
an open-source software which is used widely in data 
science to automate the data science process. KNIME is 
capable of performing all steps required for data analysis 
in a user-friendly environment for non-experts in soft-
ware engineering. Each workflow in KNIME consists of 
many nodes in which each of them performs a certain 
job. These nodes are built-in or developed by the com-
munity. Additionally, the KNIME contains a wide range 
of community nodes for the analysis of chemical struc-

tures such as chemical similarity check.

The workflow of current study consists of four stages 
i.e., 1) data collection, 2) data clustering, 3) model de-
velopment and training, and 4) bioactivity prediction and 
score reviewing. Figure 1 shows the workflow for data 
collection. The required bioactivity data targeting HIVP 
has been downloaded from ChEMBL database (ChEMBL 
ID: ChEMBL243[20]) and the data were pre-processed. 
Then, descriptors for each molecule entry in the table 
were calculated by the help of RDKit nodes (http://www.
rdkit.org/), an open source toolkit. Generally, RDkit adds 
some cheminformatics functionalities such as molecule 
I/O, substructure searching, and chemical reactions into 
KNIME. 

Next, the data clustering was performed by using the K-
means clustering method[21] as shown in Figure 2. Nor-
mally, K-means clusters data into k number of clusters 
in which each observation belongs to the cluster that has 
the nearest mean. In the present study, the data clustering 
was conducted based on the structure similarity with the 
Darunavir (DVR), an oral nonpeptidic HIVP inhibitor[22]. 
Previous study has reported that DVR has a high genetic 
barrier to resistance and active against multidrug-resistant 
HIV isolates[22]. Therefore, this drug has been incorporat-
ed into data clustering procedure. 

Following data clustering, three machine learning mod-
els were developed and trained i.e., linear, polynomial 
and random forest regression with 67% of available data. 
Figure 3 shows the random forest learner as a sample of 
developed models. After exhaustive model training, the 
optimal number of features should be selected in ‘Fea-
ture Selection Filter” node. Finally, the trained mod-
els were tested with the data that have not been used in 
the training to validate the trained model. The reusable 
workflow has been tested for KNIME 3.6 and can be re-
quested from Computational Chemistry Research Group 
Services, (https://compchem.dicc.um.edu.my/services), 
Email:compchem@um.edu.my.

Figure 1. Workflow of reading data from ChEMBL and Drugbank.

An automated workflow...       
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descriptors by RDKit are shown in Figure 4. For data 
clustering, the sum of squared errors were calculated 
with K-means clustering followed by determination of 
the best number of clusters using elbow method. The re-
sults have indicated that the data must be clustered into 
three groups (Figure 5). Subsequently, three clusters 
were identified and the highest bioactive structure has 
been shown in each cluster (Figure 6). 

Results and discussion

During data reading process, a total of 8241 data were 
extracted from ChEMBL database[20] in which 2069 were 
selected based on the inclusion of IC50 value. The DVR 
was retrieved from the DrugBank database (https://www.
drugbank.ca/) (DrugBank ID: DB01264). The examples 
of data which have been downloaded and calculated the 

Figure 2. Data clustering workflow based on the similarity of structures and drug.

Figure 3. Random forest machine learning model training to find the optimal features.

Figure 4. Samples of fetched data.
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In training and validation steps, the automated activity 
prediction has been performed using three different learn-
ing methods i.e., random forest, linear and polynomial re-
gression. As shown in Table 1, each method has achieved 
different performance which represents by different value 
of coefficient of determination, R2. Moreover, the trained 
models were evaluated by 10-fold and leave-one-out cross 
validation (CV) methods. 

V-fold cross-validation (VFCV) is a very popular method 
due to its low computational cost. In this method, the size of 
the training set is nt = n(V-1)/V and n/V of data are used for 
validation purpose. Furthermore, the reliability of a model 

is largely depends on the value of V. Many studies have 
suggested that if the value of V=10, the model is more 
accurate[23]. In contrast, Leave-one-out cross validation 
(LOOCV) technique is computationally intensive[24]. In 
this CV method, nt = n-1 which means that in each itera-
tion only one of the data points left out for validation. 

Our results have indicated that the random forest with 
auto prediction validation method is the most reliable 
with the best R2 value of 0.9394. The bioactivity predic-
tion with random forest but different validation methods 
is depicted in Figure 7. 

Figure 5. Optimal number of clusters based on the elbow method in K-means 

structural clustering.

    

 Figure 6. Clusters based on the similarity distance from Darunavir with the 

structural diversity. The best activity models in each cluster are shown.

Table 1. Results of LogIC50 value prediction by different methods.

Learning Method Validation Method Structures Coefficient of determi-
nation (R2)

Linear regression Auto Prediction All 0.474
Linear regression Leave one out All -2.368
Linear regression 10-fold All -1.122

Polynomial regression Auto Prediction All 0.167
Polynomial regression Leave one out All 0.158
Polynomial regression 10-fold All -0.045

Random forest Auto Prediction All 0.939
Random forest Leave one out All 0.663
Random forest 10-fold All 0.371

Figure 7. Prediction of logIC50 values with random forest regression.

An automated workflow...       
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Conclusion

In this paper, we have presented an automated workflow by 
using KNIME Analytical Platform for HIVP inhibitors. A 
QSAR model has been developed to predict the bioactiv-
ity features of the compounds. Furthermore, this workflow 
can be adapted for other diseases in three easy steps i.e., 1) 
automatically download the database of inhibitors for the 
target disease from ChEBML website and the well-known 
drug from DrugBank database, 2) generate the descriptors 
3) select the optimal number of features for machine learn-
ing models training and prediction. Therefore, this study 
paved a way to simpler process of drug discovery.
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