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Abstract: Acting like mini-factories, microorganisms are a valuable source of natural 

bioactive compounds of unique chemical structures. Peribacillus sp. MUM 13 was recovered 

from the mangrove forest in Malaysia during a screening program for bioactive microbes. 

Whole genome analysis revealed that the genome size of MUM 13 as 4,649,225 bp (with G 

+ C content of 40.8 %). Bioinformatic analysis predicted the presence of lassopeptide 

biosynthetic gene clusters within the genome of MUM 13, which indicates the bioactive 

potential of the strain and calls for further experiments to explore the strain characteristics, 

particularly in combatting against pathogenic microbes.  
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1. Short Introduction 

Microorganisms continue to strive as a vital source of pharmaceutically essential 

compounds, and researchers are still heavily exploring different biomes to seek potent 

molecules that can combat deadly infections and chronic diseases in humans and livestock[1–

7]. Among the Bacteria kingdom, those under the Actinobacteria are known as prolific 

producers and valuable enzymes, particularly Streptomyces species[8–12]. Despite that, 

another group of Gram-positive bacteria, Bacillus sp. has also significant contribution in 

producing industrially important enzymes, including protease, amylase, and uricase[13–16]. 
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Outtrup and Jørgensen summarized that almost all protease used in detergents were derived 

from Bacillus sp. and accounted for more than one-quarter of total enzyme sales of the 

industrial enzyme supplier, Novo Nordisk A/S[16,17]. Majority of the protease in high pH 

detergents are produced by the alkaliphilic Bacillus clausii, before undergoing further 

modification to increase washing performance under specific conditions (e.g., low 

temperature and water hardness). Nonetheless, this species has demonstrated its potential 

beyond industrial applications, particularly in the medical field[18–22]. Due to the ability to 

produce spores, B. clausii can survive through the stomach's acidic environment, allowing it 

to colonize the intestine, even in the presence of antibiotics[23]. As a result, several studies 

have suggested the potential use of B. clausii as a probiotic in humans against acute diarrhoea, 

recurrent respiratory infections, or even allergies[19,24–26]. During a screening program for 

bioactive microorganisms, MUM 13 was recovered from a mangrove forest in Malaysia. The 

16S rRNA analysis showed that the strain displayed 98.44% similarities with Peribacillus 

muralis[27–29]. The strain was subjected to whole-genome sequencing to further explore its 

bioactive potential and specific phenotypic characteristics (e.g., antibiotic resistance).  

2. Data Description 

During a screening program for bioactive microbes, MUM 13 was initially isolated 

from a mangrove forest located at Kuala Selangor, Malaysia[30–38]. The whole genomic DNA 

of MUM 13 was extracted using Masterpure™ DNA purification kit (Epicentre, Illumina 

Inc., Madison, WI, USA) before RNase treatment[39–41]. The construction of the DNA library 

was done using Nextera™ DNA Sample Preparation kit (Nextera, USA), while its quality 

was accessed with Bioanalyzer 2100 high sensitivity DNA kit (Agilent Technologies, Palo 

Alto, CA)[42–44]. Whole-genome sequencing (paired-end) was done on the Illumina MiSeq 

platform with MiSeq Reagent Kit 2 (2 × 250 bp; Illumina Inc., Madison, WI, USA)[44–47]. 

Trimmed sequences were subjected to de novo assembly on CLC Genomics Workbench 

version 7, which resulted in 186 contigs and an N50 contig size of 51,696 bp. The genome 

size of MUM 13 is 4,649,225 bp, with an average coverage of 59.0-fold and G + C content 

of 40.8 % (Table 1). The genome sequence of MUM 13 has been deposited at 

DDBJ/EMBL/GenBank under accession of MLYQ00000000. The version described in this 

paper is the first version.  

Gene prediction was performed using Prodigal (version 2.6)[48], while ribosomal 

RNA (rRNA) and transfer RNA (tRNA) were predicted using RNAmmer[49] and tRNAscan 

SE version 1.21[50], respectively. Based on the annotation on Rapid Annotation using 

Subsystem Technology (RAST) and NCBI Prokaryotic Genome Annotation Pipeline 

(PGAP)[51–53], MUM 13 genome contains 4,336 protein-coding genes, with most genes 

involved in amino acids and derivatives processes (9.05 %) (Figure 1). A total of 77 tRNA 

genes and 10 rRNA genes were detected in MUM 13 genome. The 16S rRNA gene sequences 

obtained from paired-end Sanger sequencing match the sequence obtained from WGS, 

leading to the identification of a closely related strain as P. muralis with gene similarity 

recorded as 98.44 %[28,54]. 
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Table 1. Genome properties of Peribacillus sp. MUM 13. 

Properties Peribacillus sp. MUM 13 

Genome size (bp) 4,649,225 

Contigs 186 

Contigs N50 (bp) 51,696 

G + C content % 40.8 

Genome coverage 59.0x 

Protein-coding genes 4,336 

tRNA 77 

rRNA (5S, 16S, 23S) 10 (7, 1, 2) 

 

 

Figure 1. Subsystem classifications for Peribacillus sp. MUM 13 based on RAST annotation. 

The identification of biosynthetic gene clusters was studied on antibiotics & 

Secondary Metabolite Analysis Shell (antiSMASH) on strict settings[55–58]. One gene cluster 

reflected more than 80 % similarities to known gene clusters responsible for the biosynthesis 

of lassopeptide, paeninodin. The antimicrobial lassopeptide paeninodin was initially 

described by Zhu and the team via genomic analysis of Paenibacillus dendritiformis C454[59]. 

Even though compounds belonging to the lassopeptide class has been described since 1991, 

increasing attention is drawn onto this class of compounds as revealed to be useful 

therapeutics given that these compounds generally have excellent stability against chemical, 

thermal and proteolytic degradation[60–62]. In 2019, Zyubko and the team have successfully 

obtained lassopeptide pseudomycoidin encoded by Bacillus pseudomycoides DSM 12442 

through in vivo synthesis method[63,64]. At the time of writing, even though the bioactivity 

potential of pseudomycoidin remains unknown, the study highlights that lassopeptide, 
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including pseudomycoidin could serve as a lead compound to develop highly potent bioactive 

compounds. The antimicrobial resistance (AMR) genes of MUM 13 was predicted using the 

Resistance Gene Identifier (RGI) from the Comprehensive Antibiotic Resistance Database 

(CARD)[65–71]. Using strict option as RGI screening criteria, only one AMR gene was 

identified belonging to ampC-type beta-lactamase gene family, and implied that MUM 13 

potentially display resistance towards cephalosporins and penicillins. Nonetheless, the 

detection of the biosynthetic gene cluster responsible for the production of lassopeptide in 

the genome of MUM 13 further warrants subsequent analysis, particularly to investigate the 

antimicrobial activities and possibilities for the strain to be utilized as a probiotic in 

agriculture[72].  
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