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Abstract: Since the discovery of streptomycin from Streptomyces griseus in the early 1940s, streptomycetes from various 
environments have been studied thoroughly for the ability to produce bioactive compounds including antibacterial, 
antioxidant, anticancer, antifungal as well as immunomodulatory properties. Previously identified as a novel strain from 
a mangrove forest in Malaysia, Streptomyces malaysiense MUSC 136T was selected for genome sequencing to explore its 
genomic potential. The genomic size comprises of 7,963,326 bp with a G+C content of 72.2% and a total of 6,614 protein-
coding genes. As an attempt to investigate the types of biosynthetic gene cluster present in the MUSC 136T, the whole 
genome sequence was analyzed with a bioinformatics tool, antibiotics & Secondary Metabolite Analysis Shell (antiSMASH). 
Using the “strict” prediction method, a total of seven biosynthetic gene clusters which displayed similarity of more than 
80% to known gene clusters including ectoine, geosmin as well as desferrioxamine. Apart from emphasizing the impor-
tance of streptomycetes from unique environments like mangrove forest, the current study serves as a foundation for future 
studies on the role of specific genes present in biosynthetic gene clusters which enables the exploitation of MUSC 136T to 
synthesize important and valuable compounds.
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Short Introduction

Ubiquitous in nature, streptomycetes have growth 
advantages compared to other microbes, given that 
their unique life cycle and ability to form spores when 
conditions are not favorable for growth[1–8]. Additionally, 
these filamentous microbes can produce compounds 
of various structures possessing bioactivities such as 
antioxidant, anticancer, antibacterial, and so forth[1,9–20]. 
The discovery of bioactive streptomycetes from unique 
environments like the deep sea, cave, and mangrove forest 
has proven successful[21–33]. During a screening program 
for bioactive Actinobacteria (including those belonging 
to genus Streptomyces) in Malaysia, Streptomyces 
malaysiense MUSC 136T was recovered from a mangrove 
forest in Tanjung Lumpur location on the East Coast of 
Peninsular Malaysia[34,35]. The polyphasic study on the 
strain   showed  that  its  16S  rRNA   gene   showed  high  

similarities with other members of Streptomyces genus, 
including Streptomyces misionensis NBRC 13063T

(99.6%), Streptomyces phaeoluteichromatogenes NRRL 
5799T (99.6%), and Streptomyces rutgersensis
NBRC 12819T (98.9%). Nonetheless, DNA-DNA hy-
bridization (DDH) results demonstrated that the strain is 
indeed a novel strain belonging to this genus as its values 
are well below the recommended delineation value (i.e., 
70%) when compared to three of the selected type strains 
(DDH value ranged from 22.7–47.5%)[35,36]. The type strain 
for MUSC 136T is available at two culture collection 
centres with the accession of (=DSM 100712T = MCCC 
1K01246T). In our previous study, fermentative extracts 
of MUSC 136T exhibited potent cytotoxic activities 
against several human colon cancer cell lines, with cell 
survival recorded to be less than 50% (extract dose: 400 
µg/ml)[35]. In turn, these results prompted further mining 
into its genomic sequence,  particularly  the  detection of 
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gene clusters related to bioactive compounds production.

Data description

Whole genomic DNA of MUSC 136T was extracted 
using a commercial kit, Masterpure™ DNA purification 
kit (Epicentre, Illumina Inc., Madison, WI, USA) before 
RNase treatment (Qiagen, USA)[37–40]. DNA library was 
constructed with Nextera DNA Sample Preparation kit 
(Nextera, USA), while the library quality was evaluated 
by Bioanalyzer 2100 high sensitivity DNA kit (Agilent 
Technologies, Palo Alto, CA). Paired-end sequencing 
was performed on Illumina MiSeq platform with MiSeq 
Reagent Kit 2 (2 × 250 bp; Illumina Inc., Madison, WI, 
USA)[41,42]. After trimming, the paired-end reads were de 
novo assembled on CLC Genomics Workbench version 
7 (CLC bio, Denmark), which resulted in 235 contigs 
and a N50 contig size of approximately 123,175 bp. The 
genome size of MUSC 136T comprised 7,963,326 bp, 
with an average coverage of 95.0-fold and G+C content 
of 72.2%. The genome sequence of MUSC 136T has been 
deposited at DDBJ/EMBL/GenBank under accession of 
LBDA02000000. The version described in this paper is 
the second version. 

Table 1. General genomic features of Streptomyces malaysiense MUSC 136T.

Streptomyces malaysiense MUSC 136T

Genome size (bp) 7,963,326

Contigs                                                                                           235

Contigs N50 (bp) 123,175

G+C content % 72.2

Genome coverage 95.0x

Protein coding genes 6,614

tRNA 67

rRNA (5S, 16S, 23S) 1, 1, 1

The assembled genome was annotated using Rapid 
Annotation using Subsystem Technology (RAST) 
and NCBI Prokaryotic Genome Annotation Pipeline 

(PGAP)[43,44]. Prodigal (Version 2.6) was used to perform 
gene prediction, while ribosomal RNA (rRNA) and 
transfer RNA (tRNA) were predicted using RNAmmer 
and tRNAscan SE version 1.21, respectively[45–47]. This 
analysis revealed 6,614 protein-coding genes, along with a 
total of 67 tRNA and three rRNA genes. Based on RAST 
annotation, most of the protein-coding genes were shown 
to be involved in amino acids and derivatives metabolism 
(9.47%), followed by carbohydrates metabolism (7.19%) 
and protein metabolism subsystems (4.60%) (Figure 1). 
Further analysis of antibiotics & Secondary Metabolite 
Analysis Shell (antiSMASH) detected the presence of 36 
biosynthetic gene clusters in MUSC 136T genome using 
“strict” detection settings (version 5.1.1)[48,49]. Among 
these biosynthetic gene clusters, seven of them displayed 
more than 80% similarities to known gene clusters 
related to terpene, lantipeptide, ectoine, thiopeptide, and 
siderophore production. Besides being an important drug 
to treat iron overload, the potential use of the siderophore, 
desferrioxamine, in combatting chronic diseases like 
neurodegenerative diseases and cancer were also 
examined over these years[50–53]. Complementing previous 
findings from chemical profiling studies, MUSC 136T

indeed produces desferrioxamine, which is suggested to 
be responsible for the cytotoxicity observed against colon 
cancer cell lines[35]. As a matter of fact, iron metabolism 
has been implicated as a potential therapeutic target in 
cancer treatment as cancer cells typically have higher iron 
requirements compared to healthy, normal cells[54–60]. By 
reducing the availability of iron, it is possible to reduce 
oxidative damage, which is often seen in colorectal 
cancer, while at the same time preventing colon cancer 
cell growth and survival. With the identification of 
biosynthetic gene cluster responsible for desferrioxamine 
within the genome of MUSC 136T, future works 
involving modification of gene expression to enhance the 
production of this valuable compound as well as other 
pharmaceutically important compounds like ectoine as 
cytoprotectant against radiation and inflammation[61–70] as 
well as lantipeptides which can act as potent antibiotics to 
prevent deadly infectious diseases[71–81]. 

Whole-genome sequenee...

Figure 1. Subsystem category distribution of Streptomyces malaysiense MUSC 136T (based on RAST annotation server).
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