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Abstract: This paper presents the functionalities of automation and agricultural robotics 

(agribots) in recent years of farming operations. Several works and developments on 

automation and agribots from different scopes and field of research are reviewed which 

include the type of agribots and automation that have been developed, specifically applied 

technologies, practicality in the field, and their originality from different backgrounds and 

areas. Recently, agribot applications have been identified in which the automated routine 

workflow is more efficient than a human or the bulky machine approach. Agribot and 

automation applications are technically aligned with the IR 4.0 concept, whereby various 

smart technologies and robotics are being produced and practiced in agriculture. In most 

cases of agribot applications, the technology has not yet been commercialized in recent years. 

This may be related to information-acquisition systems. As such, the agribot application 

namely the Thorvald II agricultural robotic system was developed with versatile functions 

and fabricated to transport any tool and works on various types of farmlands. Although the 

automated setup was conducted in a European country, it can be used as an initial or 

preliminary idea for developing countries to follow or structure the same robotic system for 

harvesting or developing simple manipulators for each agricultural task.  
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1. Introduction 

In recent times, Industrial Revolution 4.0 has been accepting innovations in scientific 

environments by linking all technological elements continuously and effortlessly. All devices 

and internet tools, such as cyber-physical systems (CPS) and their functionalities, are 

addressed to constantly communicate with each other and correspond to a high-level 

synchronisation system (He & Xu, 2015; Lee et al., 2015; Ren et al., 2013; Schlechtendahl 

et al., 2015). Thus, coordinating activities is vital to improve supply chain management by 

optimising the scrutiny of various elements in continual rivalry (Ilaria et al., 2019; Wiendahl, 

2012). Nowadays, a focus on agribot applications has been identified in which the automated 

routine workflow is more efficient than a human or the bulky machine approach (Bechar & 

Vigneault, 2016; EU Robotics AISBL, 2014). Research is required into robotic platforms that 

can operate close to the crops on the ground or at a certain height incorporated with advanced 

automatic configuration and system modules, especially with interactive or perceptible 

properties, such as picking soft fruit. Using varied platforms combining ground-based and 

aerial platforms allows human operators to have an “eye in the sky” for monitoring and 

mission planning. Collective and cooperative actions become beneficial for large-scale arable 

lands and crops as tasks can be accomplished in parallel and on an economic scale (UK-RAS 

White papers, 2018).  

Generally, agricultural robotics or agribots for mass field operations can function in 

robust and unstructured agricultural environments with a similar quality of work achieved by 

present methods and approaches. New technologies must be developed with intelligent 

systems to adapt robotic systems to overcome the continuously changing conditions and 

variability in agricultural environments. The automated systems must be cost-effective, safe, 

and preserve the environment. However, in most agribot applications, the technology has not 

yet been commercially available in recent years. This may be related to the information-

acquisition systems, including sensors, fusion algorithms, and data analysis, which are 

needed to be attuned to the dynamic settings of the unstructured agricultural environments. 

Furthermore, integrating human operators into the system control loop and reducing 

system sizes are essential to synchronizing for better system performance and reliability 

(Bechar & Vigneault, 2016). Furthermore, the decline of human intervention and increases 

in efficiency, precision, and reliability are possible by increasing the output of agricultural 

machinery through automation processes (Schueller, 2006). However, the lack of minimally 

skilled labours has contributed to suffering in agriculture. This condition is evident when the 

field size increases, the number of farmers or planters decreases, and the impact of food 

demand increases, leading to more need for effective agricultural practices (Nagasaka et al., 

2004) and the output of traditional farming. The tasks conducted manually by farmers can be 

improved through intelligent machines (Xia et al., 2015). Due to the high initial capital cost 

for agribots application in the field, including expert workforce and equipment, the needed 

workforce and significantly skilled machine operators are slowly declining to compensate for 

the expenses. 
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From the current economic perspective, the local and global industries, such as 

electrical and electronics, robotics, aviation, and plantations, rely extensively on Chinese 

demand. This is due to the current status and economic progress of China as the largest 

economy in the world on a purchasing power basis and controlling 20% of the global gross 

domestic product (GDP) in 2019, as reported by the International Monetary Fund (The Star, 

2020). Meanwhile, The United States represents 15% of the global GDP share. Indeed, any 

disruption to the growth of China due to the ongoing virus outbreak will significantly hit the 

global supply chain and trend, significantly when China’s economy is already growing at the 

lowest rate in decades. Recently, due to the impact of the novel coronavirus on China, the 

demand from China, as the second largest palm oil importer in 2019, has dropped and is 

affecting the Malaysian economy, especially the palm oil industry. Thus, this paper aims to 

explore the research and development of automation and agricultural robotics (agribots) in 

recent years of farming operations, along with the agribots application corresponding to the 

operative implementation of Industry 4.0. In this review, several papers were selected and 

discussed based on the type of agribots and automation that have been developed, specifically 

applied technologies, practicality in the field, and their originality from different backgrounds 

and areas, although many scientists have invented their autonomous and agribot inventions 

2. Agribots Concept 

Extensive research has been conducted on applying robots and automation to various 

field operations, and technical feasibility has been widely demonstrated. Recent research and 

developments in robotics for agricultural field applications and the associated concepts, 

principles, limitations, and gaps are reviewed. Over the past two decades, research has 

investigated collaborations between a human operator (HO) and the system to create a 

human-robot system (HRS). Such research has addressed the levels of automation available 

for handling the various aspects of data acquisition, data and information analysis, decision-

making, action selection, and implementation appropriate for a different task or sub-task 

goals and parameters. Various types and levels of automation have been evaluated by 

examining the associated human performance consequences, such as mental workload, 

situation awareness, complacency, and skill degradation (Guida & Lamperti, 2000). 

Agribot used for crop production comprises numerous subsystems and devices that 

enable them to operate and perform their tasks. These sub-systems and devices deal with path 

planning, navigation or guidance abilities, mobility, steering and control, sensing, 

manipulators or similar functional devices, end effectors (produce contactors or tools), and 

above all, guidelines on how to manage individual or simultaneous unexpected events, and 

some level of autonomy (van Henten et al., 2013). 

Agribots are generally designed to execute a ‘main task,’ which is usually a specific 

agricultural task such as planting, weeding, pruning, picking, harvesting, packing, handling, 

etc. To perform the ‘main task,’ the agribot requires the ability to perform several ‘supporting 

tasks,’ e.g., localisation and navigation, detection of the object to treat, the treatment or action 
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to commit, etc. Information and commands are transferred between the ‘supporting tasks’ 

and the ‘supporting’ and ‘main tasks.’ Each ‘supporting task’ controls one or several sub-

systems and devices, and a sub-system or device may serve several ‘supporting tasks’ (Figure 

1). 

 

 
 

Figure 1. Principle and components of Agribot with its structure of task sub-systems (Bechar & Vigneault, 

2016). 

3. Application of Agribots in Agriculture Practices 

Several research and developments (R&Ds) on agribots have been reported. This 

review compiled and discussed these to bring forward recent progress and trends in 

automation and agribot applications worldwide. Many researchers and technologists have 

been involved in, designed, and developed agribots and automation, as listed in Table 1. 

Table 1. The latest development of agribots and automation in agriculture 

No. Researchers/Scie

ntists/Technologi

sts 

The invention of agribots and 

automation 

Outputs/Findings 

1 Pawin et al. 

(2015) 

Navigation of an autonomous tractor for a 

row-type tree plantation using a laser range 

finder 

Navigation systems to operate the 

tractor autonomously along the test 

path without any crash. On average, 

the RMS position difference was 

recorded at 0.370 m. The 

experiment on the steering angle 

was observed with

the RMS error values of 3.139o, 

4.394o, and 5.217o for the wide 
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No. Researchers/Scie

ntists/Technologi

sts 

The invention of agribots and 

automation 

Outputs/Findings 

bend, tight bend, and U-turn route, 

respectively. 

2 Lipinski et al. 

(2016) 

The precision of tractor operations with soil 

cultivation implements using manual and 

automatic steering modes 

Automatic steering with free access 

to the SF1 correction signal 

(satellite accuracy) and paid 

subscription for the SF2 correction 

signal is more accurate along the 

reference path than manual steering. 

3 Barnea et al. 

(2016) 

Colour-agnostic shape-based 3D fruit 

detection for crop harvesting robots 

A rapid pruning phase using the 

agribot based on visual focus can 

detect their prototypical signature 

on image gradients. This is followed 

by local symmetry detection in 

range data, and finally, the 

illustration of shape features 

relative to this detected symmetry 

can obtain partial post-invariance. 

4 Gonzalez-de-

Santos et al.    

(2016) 

Fleets of robots for environmentally safe 

pest control in agriculture 

The ground robots (UGV) were 

equipped with sensors, on-board 

perception systems, controllers, and 

communication systems to 

configure autonomous robots 

capable of carrying agricultural 

implements. The aerial robots 

(UAV) and hex-rotor drones were 

designed to have two camera 

systems to detect weed patches 

remotely on narrow-row crops. 

Both types of vehicles were capable 

of working jointly. 

5 Botterill et al. 

(2016) 

A robot system for pruning grape vines Pruning every vine needs the robot 

arm to cut an average of 8.4 canes 

within intervals of 1.5 s/vine. The 

time taken to prune per vine is 2 

min, similar to human pruners, and 

it could be significantly quicker 

with a faster arm. 

6 Medeiros et al. 

(2016) 

Modeling dormant fruit trees for 

agricultural automation 

The system can identify the primary 

branches with a detection accuracy 

of 98% and estimate their diameters 

within an error of 0.6 cm. The 

current application of the system is 

slow for large‐scale areas, with 

approximately two trees per hour. 

7 Sampoornam et 

al. (2017) 

Agriculture robot (Agribot) for harvesting 

underground plants (rhizomes) 

The Agribot could pick the rhizome 

plants, spray off pesticides, and 

trace the soil moisture content. The 

invention of an Agribot, with the 

main target to reduce labour costs 

and modernize the conventional 
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No. Researchers/Scie

ntists/Technologi

sts 

The invention of agribots and 

automation 

Outputs/Findings 

agriculture practice by local 

farmers. 

8 Lars and Pal 

(2017) 

The Thorvald II agricultural robotic system The standard Thorvalds II 

configurations were presented 

entirely and used in different 

situations by assembling various 

modules. The most presentable 

configuration of the Thorvald II 

during the field trial was noticed, in 

which Configuration 3 was able to 

stabilise itself on the ground with its 

open edge. Besides that, this 

configuration succeeded in moving 

with a single wheel, although 

passing through the tallest obstacle. 

9 Albani et al. 

(2017) 

Monitoring and mapping with robot 

swarms for agricultural applications 

The standard monitoring strategy 

was applicable and workable 

contrary to patchy weed 

dissemination, interacted 

effectively with low rates of weed 

recognition, and presented better 

scalability with the group size. A 

baseline result for the target 

scenario of monitoring and mapping 

weed in a field using a swarm of 

UAVs (Figure 16). 

10 Burud et al. 

(2017) 

Exploring robots and UAVs as phenotyping 

tools in plant breeding 

Integrating multispectral sensors on 

UAVs and robots provides an 

enhanced and flexible measured 

survey solution with accurate data 

captured on-site. 

11 Underwood et al. 

(2017) 

Efficient in‐field plant phenomics for row‐

crops with an autonomous ground vehicle 

The system involves an autonomous 

unmanned ground-vehicle robot for 

data acquisition and effective data 

post-processing to provide 

phenotype info over large-scale 

trials. 

12 Zhang et al. 

(2018) 

Bioinspired design of a landing system with 

soft shock absorbers for autonomous aerial 

robots 

The proposed landing system's 

adaptability and shock absorption 

capacity can adapt to various 

surface structures and reduce 

impact force by 540N at maximum. 

13 Higuti et al. 

(2018) 

Under canopy light detection and ranging‐

based autonomous navigation 

The robot recorded more than 6 km 

of independent run in straight rows, 

demonstrating great promise for 

LiDAR‐based navigation, 

especially in realistic field 
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No. Researchers/Scie

ntists/Technologi

sts 

The invention of agribots and 

automation 

Outputs/Findings 

environments for small, under-

canopy robots. 

14 Najib et al. 

(2021) 

Performance of Oto-BaCTM, a ground-

based artificial intelligence counter of the 

bagworms (Lepidoptera: Psychidae) 

The G1 larvae (stages 1-3) were 

found to be easily detected in Trial 

1 (47% - Live and 72% - Dead) and 

Trial 2 (87.5% - Live and 78.7% - 

Dead). A positive Pearson product-

moment correlation coefficient 

between the two variables 

(percentages of detection and 

temperature), R2 = 0.997 for Trial 1 

and R2 = 0.888 for Trial 2 for Oto-

BaCTM performance (Figure 2). 

15 Ling et al. (2019) Dual-arm cooperation and implementation 

for robotic harvesting tomato using 

binocular vision 

The experiment revealed that 

robotic harvesting could achieve an 

87.5% success rate with mean 

harvesting times on the heating 

pipes of 29 s/fruit. Besides that, in 

terms of positioning errors by robot 

arms, the hand-eye coordination 

technique was distributed from 5 

mm to 10 mm in the positioning 

measurement. The dual-arm 

cooperative approach is realistic for 

robotic harvesting with vacuum cup 

grasping and wide-range cutting. 

16 Kanagasingham 

et al. (2019) 

Integrating machine vision-based row 

guidance with GPS and compass-based 

routing to achieve autonomous navigation 

for a rice field weeding robot 

Autonomous navigation algorithm 

for a rice field weeding robot, 

embedded with a novel algorithm to 

detect crop rows in rice fields and 

navigate throughout the area 

without damaging the crops. This 

was equipped with a GNSS and 

compass, which provided path 

planning and location around the 

field and performing end-row turns. 

17 Williams et al. 

(2019) 

Robotic kiwifruit harvesting using machine 

vision, convolutional neural networks, and 

robotic arms 

 

The automatic harvester can harvest 

51.0% of the kiwifruit in the orchard 

with an average cycle time of 

5.5s/fruit. 

18 Gai et al. (2019) Automated crop plant detection based on 

the fusion of color and depth images for 

robotic weed control 

The fusion of color and depth is 

proven to have improved the 

average segmentation achievement 

rates from 87% (depth‐based) and 

76% (color‐based) to 97% for 

broccoli and 74% (depth‐based) and 

81% (color‐based) to 92% for 

lettuce, respectively. 
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No. Researchers/Scie

ntists/Technologi

sts 

The invention of agribots and 

automation 

Outputs/Findings 

19 Lin et al. (2020) Color-, depth-, and shape-based 3D fruit 

detection 

 

The proposed detection algorithm 

was evaluated through the mean 

average precision (mAP), with 

higher mAP values resulting in 

better recognition performance. The 

detection accuracy for the pepper, 

eggplant, and guava datasets was 

0.864, 0.886, and 0.888, 

respectively. The proposed 

algorithm is universal and robust for 

agricultural harvesting robots. 

20 Wu et al. (2020) Robotic weed control using automated 

weed and crop classification 

The proposed automated 

operational weed control system 

can perform selective mechanical 

and chemical in‐row weeding with 

unspecified detection interruptions 

in different terrain environments 

and crop growth stages. 

As listed in Table 1, the navigation system for the autonomous tractor using LRF was 

explored and further discussed for independent or automatic scopes. This system was run 

using a control algorithm to detect landmarks and points-to-go inside the plantation. By 

studying this technology, the farmers can carry out, efficiently and timely, their routine 

manuring work. Besides that, in the entomology field, the world first automated detector and 

counter for the insect pest bagworm has been developed to assist labourers in their census 

work in tropical countries. The AI device was enabled to detect target-specific objects and 

gave a real-time result of bagworm census by distinguishing between the living and dead 

bagworms according to their stages. As for the agribot scope, Indian researchers have 

successfully invented a precise, cheap, and practical device for harvesting. They have 

contributed a significant beneficial tool for poor farmers in India, which can cover a labour 

shortage scenario in their farms and increase their yield and productivity. Another agribot 

technology is configuration and set-up modules for the Thorvald II agricultural robotic 

system. This robotic system was developed with versatile functions, fabricated to transport 

any tool, and works on various farmlands. Although the robotic set up was conducted in a 

European country, it can be used as an initial or preliminary idea for developing countries to 

follow or structure the same robotic system for harvesting or developing simple manipulators 

for each agricultural task. For the harvesting of tomato purposes, there is a dual-arm 

cooperation using a stereo binocular vision sensor. This approach was initiated to increase 

efficiency during harvesting by autonomous robots. In pest and disease management, robotic 

systems for effective weed and pest control were undertaken and aimed at diminishing the 

use of agricultural chemical inputs, increasing crop quality, and improving the health and 

safety of production operators. This effort was carried out by a fleet of heterogeneous ground 

and aerial robots fortified with advanced sensors, enhanced end-effectors, and better-quality 
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decision-control algorithms to handle various agricultural situations. Another autonomous 

research work was conducted by creating a novel and robust recognition algorithm based on 

color, depth, and shape information, which is recommended for identifying spherical or 

cylindrical fruits on plants in natural environments. Thus, this can guide harvesting robots to 

pick them automatically. In another research and development of swarm robots, a study was 

conducted to implement a roadmap to convey them to the field, focusing on weed control 

problems. This technique was run under the Swarm Robotics for Agricultural Applications 

project (SAGA), covered within the EU project. In line with the study, a baseline output for 

monitoring and mapping weeds in the field by swarms of UAVs was introduced. 

The first topic in this discussion is automation, developing a navigation system for 

autonomous tractors and an automated detector and counter (Oto-BaCTM) for bagworm 

census. The developed navigation system was possible, although the GPS-signal was poorly 

worked, and the real-time kinematic (RTK)-set mode failed. Landmarks assisted on the test 

routes and succeeded in performing navigation. The tractor was found to stop moving, and 

the navigation system was in order immediately after no landmarks were tracked. A 

difference in the position of the tractor's drive was recorded at 0.542 m on the U-turn test 

path when compared to the autonomous one with a manually driven tractor. The RMS 

differences increased when the tractor was conducted at the curve section compared to a 

straight route. It was acceptable for autonomous operation compared to human driving or 

manual mode. In an actual working situation, operating the tractor at the initial or last part of 

the plant rows would not be necessary. Since accuracy is required when the navigation system 

is turned ON, the control system plays a crucial function by calculating the first point–to-go 

from the beginning of the landmarks towards navigating onto the route. For example, the 

tractor could perform with high navigation accuracy in field work, especially in oil palm 

plantations, rubber plantations, and orchards. The system could be performed during 

ploughing, fertilising, or reaping yield in the rows. The navigation can move across plantation 

areas, including curved pathways. Sometimes, artificial landmarks are required to improve 

and assist the navigation progress (Pawin et al., 2015). 

The second automation case study, which the author carried out, focused on the 

development of a ground-based and closed system device, an automated counter of 

bagworms, or the Oto-BaCTM. From the results of the first field trial conducted by the author, 

it was revealed that the percentages of detection accuracy to distinguish between the living 

and dead bagworms were averaged to approximately 47–72% for G1 larvae, 39–50% for G2 

larvae, and 29.5% and 20.9% for G3 pupae, respectively. This part was the most challenging 

scope because the test on the prototype's performance was conducted at the field site of oil 

palm plantations, with bagworms of an outbreak record. Regarding lighting effects from the 

surroundings/sunlight, the prototype was equipped with an imaging chamber or set up in a 

closed system operation. This condition gave better recognition of the bagworm features or 

details. 
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According to Shivang et al. (2019), the upscaling of the image before detection can 

tackle common detection problems. However, a naive upscaling is not competent due to the 

large images that are too large and heavy to fit into a GPU processor for training. 

Furthermore, when the detection was carried out in the field, the flatness of the ground for 

operating the prototype was uncertain. The structure of the fronds contributed to different 

LED light intensities, which came from the Red and IR light sources (630 nm and 940 nm) 

to detect the living and dead pupae. This uneven ground could be part of the reason for the 

low percentage of detection accuracy. 

Furthermore, the deep learning with Faster R-CNN algorithm configuration could be 

one of the reasons for the detection performance. The specificity of the model used must tally 

with the characteristics of the targeted object, corresponding to the TensorFlow 

configuration. Further work on training datasets and developing codes are crucial to ensure 

high detection accuracy. According to Zhao et al. (2018), a more extensive training dataset 

can improve the detection accuracy of the proposed detection model. Based on the second 

field trial results, it was revealed that the detection percentages increased to 87.5% for the 

G1 larvae and 79.2% for the G2 larvae. Besides that, the detection rate for the pupal stage 

(G3) also increased to 77%. The increment was achieved after training more image datasets 

and changing the algorithm to detect the living larvae. This was achieved by setting the first 

frame of captured images as living larvae but not averaging 100 frames per 3 seconds. 

Overall, from this study, the performance of the Oto-BaCTM was validated and tested to detect 

and count the bagworms according to their groups. After some improvements on the training 

dataset, the percentages increased in the following field trial, that amounted to: 40.5% and 

6.7% for the living and dead G1 larvae, 40.2% and 29.2% for the living and dead G2 larvae, 

and 47.5% and 54.1% for the living and dead G3 pupae (Figure 2).  

 

Figure 2. The dynamic detection performance of the live and dead bagworms using Oto-BaCTM in Trial 1 and 

2 according to groups. 
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For agribot development, Lars and Pal (2017) revealed several facts in the R&D of 

the Thorvalds II structure. The standard Thorvalds II configurations presented above were 

used in different situations by assembling various modules. Concerning Lars and Pal’s (2017) 

work, time and cost were reduced when they used the modular system to create new robots. 

This advantage has been suitable for inventors to set up operations in various environments 

in discrete projects. The robot can adapt to the existing farm conditions and later regenerate 

for other field usages. Besides that, using only two robots to make the six different designs, 

the field trial was successfully conducted by reconfiguring the robots on-site using essential 

hand tools, such as Alan keys, pliers, spanners, and screwdrivers. 

Furthermore, the robot designs were independently altered by changing modules or 

the frame geometry through modular configurations. This led to low risky tasks in designing 

and fabricating new robots. Subsequently, they can be adapted in-field within a short period. 

It was proven that the Thorvald II robot, via different modules, could operate in open fields 

by applying four-wheel drives compared to two-wheel industries, as explained in the results 

section. Lars and Pal (2017) determined the failure of the differential robots due to the small 

size of the back-caster wheels and the light weight of the robot, specifically to the side without 

a battery. Overall, the most presentable configuration of the Thorvald II during the field trial 

was noticed, in which Configuration 3 was able to stabilize itself on the ground with its open 

edge. Besides that, this configuration succeeded in moving with a single wheel, although 

passing through the tallest obstacle. 

The development of an Agribot for rhizome plants carried out by Sampoornam et al. 

(2017) has increased the interest of small-scale farmers towards sustenance agriculture/self-

sufficiency for their consumption instead of cash crops for trade. This is because the 

agriculture sector plays a vibrant role in the socio-economic development of India. Apart 

from that, small-scale farmers struggle to increase their productivity due to the high cost of 

seed and chemicals, labour shortages and fast-growing world demand for food. To overcome 

this situation, the author has developed an Agribot, which is vital in helping the farmers 

harvest the rhizomes. Throughout the R&D process, assembling gear motors that a locally 

specialised company produced has contributed to the flexibility of the operation in a vertical, 

horizontal or tilted position of the model. Then, the incorporation of the wiper motors to run 

the wiper part was another significant achievement of this project. Therefore, the Agribot 

could pluck the rhizome one at a time beneath the soil. A rotating blade was assembled to cut 

the wild plants above the ground to increase operational performance. It was operated by a 

power source channelled from a 300-rpm motor. Overall, the author was satisfied with the 

invention of an Agribot, with the main target of reducing labour costs and modernizing local 

farmers' conventional agriculture practices. 

The harvesting robot detected the ripe tomatoes at a 95% success rate by 

implementing a self-developed algorithm that applied the Adaboost and APV classifiers. 
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However, a 5% miss detection occurred due to the leaf obstruction. This happened when 50% 

of the leaf occlusion area was traced and, subsequently, the targeted tomato was miss 

detected. The detection algorithm was robust enough to meet the environment challenge 

factors, including half occluded and having varying illumination conditions. In terms of the 

detection speed of 10 fps, it was found to be sufficient to work in real-time. 

Meanwhile, the feasibility of hand-eye coordination led to measuring errors in a robot 

working area of less than 2.5 mm. This was achieved through the 3D location placement of 

the targeted tomato using the point cloud data from the stereo camera. Somehow, the 

sensitivity of the tomato size might have given an error in the final measurement output, 

which was distributed randomly, ranging from 5 mm to 10 mm. This happened due to the 3D 

location error and robot motion error. In addition, the performance of dual-arm cooperative 

control seems to have achieved an 87.5% success rate with a harvesting cycle time of fewer 

than 30 s. This was related to several factors, such as the control of end-effectors, the pose of 

tomatoes, and distance. Overall, improvement work must be continued to increase a 

successful harvesting rate under non-controlled conditions. 

Based on several tests conducted to exploit the possibilities of fleet robots, it was 

found that the multi-robot system could be formed to handle pest control tasks via UAVs and 

UGVs, whereby they were attached with the exact implementation, such as a canopy sprayer. 

The canopy sprayer is one of the more accessible machines to work independently because 

it can perform autonomously by incorporating perception, decision, and action. Furthermore, 

the sub-system of the robotic system can be applied for the same work in other sectors or be 

commercialised. For example, the GUI and Mission Manager's safety system in vehicles for 

joint operations was also modified and reinvented from robots of other applications to suit 

agriculture work (Pablo et al., 2016). The developed algorithms showed their robustness for 

weed patch recognition by precisely distinguishing and mapping the crop rows with 100% 

accuracy and inter-row weed patches with 85% accuracy. It was proposed to detect the early 

growth stage based on the weed maps through site-specific weed management. 

Further improvement on the algorithm needs to be made when the robot meets with 

a curved crop row in the fields and how to apply current techniques in real situations. 

Meanwhile, the Row Recognition Systems generated a total error of ±0.05 m when entering 

the crop rows with varying growth stages of crops and weeds. This happened when the maize 

was propagated in rows and separated by 0.75 m. For the mechanical/thermal system 

experiment, all the weeds existing in the intra-row and inter-row spaces were controlled with 

an average error of the burners switching on and off by 5%. The mistake led to the burners 

being activated and switched off at 0.5 m before and after treatment control. 

The robust fruit detection was successfully carried out with several challenging 

factors, such as mixed-up backgrounds, obstruction, lighting changes, and low contrast 

captured between leaves and fruits. A collective framework for distinguishing different types 

of fruits by using a low-cost RGB-D sensor was further investigated to overcome these issues. 
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Assessable experiments were conducted to prove the performance of the proposed algorithm, 

with several assumptions being attained: 

(1) The background removal can be achieved computationally using the probabilistic 

image segmentation algorithm. 

(2) A set of clusters from depth images can be produced via the depth image clustering 

algorithm with less time complexity. 

(3) Various sphere or cylinder shapes of the fruits in the clusters were successfully 

detected using the 3D shape detection algorithm. 

(4) The SVM classifier removed false positives using a training set on global point cloud 

descriptor (GPCD) features. 

Interaction amongst UAVs within the SAGA test has resulted in a better engineering 

set-up that can minimize the difference between the optimal configurations and subsequently 

generate time management properties, such as flexibility, scalability, and heftiness. The field 

can be observed from varied altitudes if extensions are carried out to move the UAVs in a 3D 

space. This amendment allows inspection of the environment to be conducted at multi 

resolutions. It enhances a coarse estimation of the weed position and density, which allots 

resources to the most promising regions. Fortunately, this approach was a robust and reliable 

configuration that can only screen weed patches of interest or a specific number of parts of 

interest over a large area, such as waste recognition, forest scrutiny, and census of animal 

populations. 

There are several research works have been reviewed and highlighted based on their 

field, which is listed as follows: 

3.1.  Navigation of an Autonomous Tractor for a Row-Type Tree Plantation Using a Laser 

Range Finder—Development of a Point-to-Go Algorithm 

This research was conducted to generate a control algorithm equipped with a sensor 

for an autonomous agricultural vehicle that can detect landmarks in the row-type plantation 

setting (Figure 3).  It can also navigate the car to a point-to-go location marked inside the 

plantation. A laser range finder (LRF) was applied as a single sensor to track objects and 

steer a full-sized autonomous agricultural tractor to enable the system.  
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Figure 3. Various patterns of plantations environment in Bo Thong, Chonburi Province, Thailand (Pawin et al., 

2015). 

As for the set-up of the autonomous tractor, a Kubota Kingwel tractor (KL-21, 15.4 

kW, Kubota, Japan) was modified with an independent control unit using a hydraulic 

actuator. A programmable logic control (PLC), Keyence KZ-A500 (Keyence, Japan) with 

digital input/output (I/O), analogue I/O, and encoder pulse encounter PCI-cards were fixed 

for signal communiqué between the computing unit and the hydraulic actuator. A Trimble 

MS750 (Sunnyvale, USA) GPS was configured to trace the tractor position during 

experiments under an RTK-GPS operation mode (Pawin et al., 2015). 

Next, the navigation control or guide algorithm was created with four stages. The first 

stage involved sampling and collecting all objects within the range of the LRF, including 

landmarks. Secondly, the things were classified into a landmark and non-landmark object. 

Thirdly, the historical objects were clarified and considered for tractor navigation, and the 

identification of a centroid was determined as a goal to run the tractor in the frontward 

direction. Finally, the steering angle was measured, and the signal was passed to the hydraulic 

actuator to navigate the tractor to the target point. All four steps were piloted constantly until 

the end of the path and stopped. The tractor was set to block autonomously when landmarks 

were sensed within the safety zone of 1 m (Pawin et al., 2015).  

3.2.  Performance of the Oto-BaCTM, a Ground-based Artificial Intelligence (AI) Counter of 

Bagworms (Lepidoptera: Psychidae) 

The authors (Najib et al., 2021) conducted this research from 2017 to 2019 to develop 

an automated detector and counter for bagworm census in oil palm plantations. The study 

site was a plantation area attacked by the Lepidoptera: Psychidae bagworm, an insect pest. 

The Automated Bagworm Counter, better known by its trademark name, Oto-BaCTM, is the 

first of its kind developed. The software functions were based on the GPU computation, using 

the TensorFlow/Teano library set-up for the trained dataset. The Oto-BaCTM uses an ordinary 

camera and self-developed DL algorithms that consist of motion-tracking and false colour 

analysis (Najib et al., 2019) to detect living and dead larvae and pupae of the Metisa plana 

(Figure 4). It also counts the number of living and dead larvae and pupae populations per 

frond, respectively, corresponding to three major groups or size classifications. The 

automated device is simple, accurate, and easy for detecting and counting bagworms on the 
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palm leaflet. The technology was based on deep learning with the Faster R-CNN technique 

(Ren et al., 2015) towards real-time object detection. 

 
Figure 4. Bagworm species of Metisa plana 

3.2.1. Set-up of field trial 

The first field trial was conducted in the Slim River estate, Perak, Malaysia, between 

the 17th of June 2019 and the 8th of July 2019. The total infested area was approximately 1000 

ha. The second field trial was carried out on the 8th of August 2019 in the Tapah smallholding, 

Perak, Malaysia, with a total infested area of 40 ha. The experiment was replicated three 

times for each treatment in both fields, and a plot size of 8 m × 8 m was used to collect the 

response data. One frond was separated into three main parts: top, middle, and bottom. 

During the snapshots, the duration of both techniques was recorded using the Oto-BaCTM 

(Figure 5) and a manual census.  

 

Figure 5. Oto-BaCTM 

3.3. Agriculture Robots (Agribots) for Harvesting Underground Plants (rhizomes) 

The research aimed to develop an Agribot (product name given by the inventor) for 

harvesting underground plants to assist poor farmers in India who cannot afford to buy and 

use a tractor in small-scale agricultural fields (Sampoornam et al., 2017). Sampoornam et al. 

(2017) developed an Agribot with two different techniques: 



AAFRJ 2023, 4, 1; a0000298; https://doi.org/10.36877/aafrj.a0000298 16 of 33 

 

 

3.3.1. The fully automatic  

A microcontroller is set for Agribot travel of approximately 15 meters (Muhammad 

et al., 2008; Ge et al., 2010). Using batteries and a rack, part of the Agribot moves up and 

plucks any plants that grow under the soil.  

3.3.2. The use of a transmitter and receiver 

The Agribot is controlled with the assistance of transmission and receiving parts 

(Tamaki et al., 2009). This method provides communication of about 80 meters, provided 

that, it is being operated with push buttons. 

The program was replicated using the KEIL and PROTEUS software to perceive the 

initial and output condition, as illustrated in Figure 6.  

 

Figure 6. Simulation test on initial and output conditions using KEIL and PROTEUS software (Sampoornam 

et al., 2017). 

Table 2 shows the range and specifications of the hardware components used to 

produce the prototype. The soil moisture sensor, SMEC 300, was used to detect moisture 

content in the soil and integrated with GSM for connectivity purposes. 
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Table 2. Hardware components 

Name Range and Specification 

Side Shaft Motors 60 rpm 

Gear Motors 60 and 200 rpm 

Wiper Motor 60 rpm 

Batteries 12 and 24v 

Relay 12 to 230v 

Crystal Oscillator 20 MHZ 

Water pumping Motor Plastic and Small 

Rack And Pinion Small 

R433A Transmitter and Receiver RF Module- 80 Meters Communication 

GSM MODEM 

Soil Moisture Sensor SMEC 300 

Light Emitting Diodes Small 

Push Buttons Small 

Wheels Medium size 

Source: (Sampoornam et al., 2017). 

3.4. The Thorvald II Agricultural Robotic System 

This research concentrated on the Thorvald II agricultural robotic platform, a 

combination of a hardware and software modular robot, fabricated to transport any tool and 

works on various farmlands. 

Lars and Pal (2017) designed and developed several Thorval platforms using 

modularity hardware where the robot consisted of standard modules. Simple operations could 

be reconstructed to handle tasks in various environments with these settings. The inventors 

have explained five main elements throughout their research: 1) Module design, 2) Electric 

system, 3) Software, 4) Robot configurations & current applications, and 5) Field trials. 

3.4.1. Module design  

Ideally, the modules are connected via modest mechanical and electrical edges and 

can assemble a robot using simple hand tools. Not every module is essential to complete the 

development of an operating robot because some are also used for improving properties. The 

diverse robot modules are described as follows: 

3.4.1.1. Robot frame 

A custom geometry was applied by cutting aluminium tubes according to set lengths 

and holding them together. To make it tauter, the robot's frame is clamped with extra 
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members. Omitting frame members can create flexibility in the robot's frame. A firmer 

structure would support additional load transportation, while a flexible frame has been 

attributed to the stability of the robot on the ground (Lars & Pal, 2017). 

3.4.1.2. Battery enclosure 

One 70 Ah or two 35 Ah with 48 V lithium batteries are placed inside the battery 

enclosure with electronics and a computing unit (Figure 7). Just one such module is sufficient 

to operate a robot; however, connecting more than one module is possible to enhance the 

robot's performance. If more than one module is used, one of them acts as the “main battery 

enclosure,” while different enclosures are “sister battery enclosures.” The function of the 

main battery enclosure is to grasp the core computer of the robot and a norm circuit board to 

handle power circuits, similar to the start-up and close-down of the robot operation. The 

module also acts as a linking point for a Controller Area Network (CAN) to communicate 

with the main controllers. (Lars & Pal, 2017). 

 
Figure 7. Thorvald II modules platform. A: battery enclosure; B: drive unit; C: steering component; D: 

suspension part; E: an early model of the sensor-interfacing segment (Lars and Pal, 2017). 

3.4.1.3. Drive module 

One or more drive modules drive the robot that stores a 500 W electrical brushless 

DC motor. It is coupled to a double-stage transmission attached to a wheel on the last part. 

As part of the transmission, an in-wheel planetary gearbox is linked through a synchronous 

belt drive. An incremental rotary encoder set up with 1000 pulse per revolution (PPR) and 

integrated Hall effect sensors that are parts of the motor features.  
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3.4.1.4. Steering module 

To turn into the horizontal platform, the drive module is required and is essentially 

linked to a steering module. It has a twin-channel motor regulator connected to the CAN of 

the robot, which regulates the motor of the module, and the other connects the motor modules 

of the engine. Ideally, an allowance of 180o rotation is programmed for the output shaft, 

which is located inside the steering module. The robot with some configurations inside the 

module is driven to move sideways and forward competently (Lars & Pal, 2017). 

3.4.1.5. Suspension module 

In the case of using a differential drive robot, the connection between a steering 

module and the robot's frame, or to a bracket on a drive module, can be linked to a suspension 

module. This configuration increases the stability of the robot on the ground, together with 

absorbing shocks (Lars & Pal, 2017). 

3.4.1.6. Passive wheel module 

This module is low in cost to develop and less complicated than the drive modules. 

Many passive wheel modules have been generated, such as caster and dual support wheels in 

a 1WD tricycle robot. 

3.4.1.7. Modules for sensors 

As for the sensor platform, there are spaces to locate the housing computers, Ethernet 

buttons, USB ports, CAN connectivity, controlled DCDC converters, and others. All 

connectors are waterproof using cable glands. Aluminium profiles mount the sensors with 

many configurations via slotting techniques. 

3.4.2. Electric system 

There are discrete numbers of sensors and motor regulators for many types of robots 

that require power and connectivity. The electric interfaces between modules have been 

simplified as the main priority of the robot's operation. The electrical system of the Thorvald 

II is as follows: 

a) The main battery enclosure – controls the start-up and shutdown of the computer 

unit. 

b) Sensor and motor power circuits – enable capacitor charging on the motor switch 

via a current-limiting resistor before connecting the primary contact. 

c) The board – functions as a port for CAN interaction and signal-receiving system. 

It can be regulated through a push button or the primary PC (Lars & Pal, 2017). 
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3.4.3 Software 

The Robot Operating System (ROS) has been selected as the software basis to ease 

the development of the coding modular of the robot (Quigley, et al., 2009). By using the 

same ROS master, all processes run by the robot are itemised and, subsequently, are nodes 

in a similar ROS network.  

3.4.4. Robot configurations and current applications 

The Thorvald II robot is designed to be a four-wheel drive and steering, consisting of 

four steering and drive modules, with four suspension modules. By applying suspension 

modules, the robot can move vertically with adaptation to bumpy surfaces, and it maintains 

good traction using an all-wheel drive in jagged terrain.  

In the polytunnel environment, a thin robot was fabricated with four drive and steering 

modules with a 0.56 m track width. The suspension module was considered unnecessary on 

even surfaces, resulting in a shorter robot with a length shortened to 1.1 m between the centre 

of the steering shafts.  

As for a wheat phenotyping study conducted on a farm, a tall robot was required 

(Burud et al., 2017) to drive over the full-grown wheat to record data from above the view 

without affecting the plants. A customised Thorvald II structure was developed (Grimstad et 

al., 2017) by welding a custom frame from steel pipes to the side frame part of the standard 

Thorvald robot. It was fixed with an IMU and an RTK-GNSS receiver to navigate the 

waypoints.  

3.4.5. Field trials 

A series of trials (Figure 8) were carried out to validate the performance of different 

configurations. All configurations used the standard frame components or parts for outdoor 

tasks. Two robots were operated in the trial (Lars & Pal, 2017) to conduct three types of tests; 

traction, passing over obstacles, and incline test. 

 
Figure 8. Results on the incline test (a) Configuration 4 and 5 failed to climb the slope using the front wheel 

drive configuration, (b) Configuration 4 and 5 were able to climb the incline when using the rear wheel drive 

configuration, and (c) All four-wheel drive configurations managed to climb the incline without any failure and 

difficulties (Lars & Pal, 2017). 
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3.5. Dual-arm Cooperation and Implementation for Robotic Harvesting of Tomatoes Using 

Binocular Vision 

There are several items involved in developing a harvesting dual-arm robot, as listed 

below

3.5.1. Hardware part 

The tomato harvesting dual-arm robot was created on a greenhouse size. The 

hardware consisted of a modular design with a stereo camera, mobile platform, end-effectors, 

a dual-arm robot, and a host computer. The main component of the harvester is illustrated in 

Figure 9. There were several main parts involved, such as a mobile platform and a stereo 

camera (Bumblebee2, Canada) with a resolution of 480 (H) × 640 (W) at ten fps and fixed at 

the top of the robot to preview the surroundings. An industrial personal computer, Intel (R) 

Core, i5-3610ME (Advantech, China), operated on Ubuntu. It was used to carry out dual-arm 

cooperation for harvesting. There were two kinds of end-effectors, namely a vacuum cup and 

a cutting gripper, which were positioned on the left and right arms of the robot, respectively.  

 
Figure 9. Design and configuration of tomato harvester robot in green house environment (Xiao et al., 2019). 

3.5.2. Detection 

Detection is the primary visual control for harvesting because it gives exact object 

identification for robot operation. This test was conducted by the binocular vision sensor of 

Bumblebee2, which had two CCD sensors made by Sony (ICX424 CCD, 1/3”, 7.4 µm). The 

right camera was used for fast tomato detection due to the challenges of operating a colour 

camera as the visual observation device. In line with this purpose, a detection algorithm was 
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developed that combined an AdaBoost classifier and colour processing analysis. (Xiao et al., 

2019): 

3.5.3. Software framework 

A flexible and adaptive software was required by using the functional implementation 

in independent modules. There were three modules in the software, namely object detection, 

motion planning, and motion control, according to different primitives of sensing, planning, 

and operating. This approach was built according to an open-loop control framework, which 

involved five main steps:  

1) Scanning — the stereo camera scanned the crop, and the RGB images were 

transferred to the host computer in real-time. 

2) Detection — the Adaboost classifier and colour processing of the RGB images were 

designated to detect ripe tomatoes. 

3) 3D scene reconstruction — A 3D field scene was displayed in the surrounding ROS 

visualisation using point cloud data.  

4) Right arm grasping — Grasped by using vacuum cup-type. 

5) Left arm detaching — using the left arm and collecting the fruit using the right arm. 

3.5.4. Dual-arm robot kinematics 

It has two mirrored 3-DOF arms, designed like a SCARA manipulator with one 

prismatic joint and two rotational joints. To measure the joint angles (θ1 θ2) for the end-

effector positioning at the x and y coordinates, the SCARA manipulator was used with 

inverse kinematics, whereby,  

 

with l1 being the length of the upper arm (330 mm) and l2 being the total length of the forearm 

(250 mm) and end-effector. 
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3.5.5. Motion control 

It was performed by a multi-axis controller, GMAS featuring EtherCAT and 

CANopen series communication. Using Linux, the GMAS controller communicated with the 

host PC via the TCP/Modbus protocol (Xiao et al., 2019). 

3.6. Fleets of Robots for Environmentally safe Pest Control in Agriculture 

This study was conducted at two farms in Arganda del Rey, Madrid, Spain, under the 

Robot Fleets for Highly Effective Agricultural and Forestry Management (RHEA) project. 

Throughout the study, the experimental and trial data were recorded with elemental sensors 

such as ultrasonic sensors, encoders, etc., and sophisticated devices, namely GNSS and 

lasers, to measure central positions (m) and volumes (l). The recorded data were separated 

and analysed based on mean values. The RHEA robot system consisted of seven central 

systems, divided into two parts: 1) Movable equipment and 2) Stationary apparatus (Figure 

10. The portable equipment contained the elements responsible for sensing crops and taking 

certain action. The Perception System was carried out using unmanned vehicles to observe 

the farms, which consisted of the Ground Perception System via the Unmanned Ground 

Vehicles (UGVs) and the Aerial Remote Perception System carried out by the UAVs. As for 

the stationary equipment, all devices and systems were fixed at their actual positions and near 

the working field. These included antennas, routers, receivers, and ethernet switches and 

plugs installed in the base station with proper housing and shelter for the operators. For the 

UAV operation, the RHEA used a hex-rotor drone, AR-200. For the UGVs, they applied a 

tractor chassis, Boomer-3050-CVT, that could carry the actuation equipment and automated 

machinery to carry out the mechanical, thermal, and spraying of pests in three different crops. 

For geographic positioning, the GNSS approach was applied to determine the positions of 

both vehicles, UGVs and UAVs.  
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Figure 10. The complete RHEA system (Pablo et al., 2016) 

 

3.7. Colour‑, Depth‑, and Shape‑based 3D Fruit Detection 

In this study, there are several works have been carried out to obtain target results, as 

follows; 

3.7.1. Image acquisition 

A cheap RGB-D sensor, Kinect V2 (Microsoft Inc.), with two cameras, RGB and 

infrared (IR), was used to snap the images. A time-of-flight technology was applied inside 

the IR camera to produce depth images (Wang et al. 2017). The RGB image resolution used 

was 424 × 512 pixels. There were three types of fruit selected in this experiment, as follows: 

pepper, eggplant, and guava. The proposed algorithm was trained, validated, and tested using 

15% of the images for the training set, 5% for validation, and 80% for the test set.  
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3.7.2. Algorithm overview 

There were four steps involved in the proposed algorithm using the shape, colour, and 

depth information of the selected fruits. The first step involved segmentation of the RGB 

images to exclude unwanted surrounding images by generating a binary mask and filtering 

the depth images. The second step aimed to create a point cloud from a regional growing-

based clustering technique. The third was detecting fruits from each point cloud using an M-

estimator sample consensus (MSAC) from a 3D shape recognition algorithm. In the fourth 

step, an SVM classifier was applied to train on the shape, colour, and angle features, whereby 

the actual fruits could be recognized. An illustration of the proposed fruit detection algorithm 

is shown in Figure 11 (Lin et al., 2019).  

 

Figure 11. An illustration of the process flow of the proposed detection algorithm. ⊙ represents the entry wise 

product (Lin et al., 2019). 

3.7.3. Feature extraction and classification 

This section aimed to differentiate between fruits and non-fruits by extracting a feature vector 

for every point cloud recognised by MSAC and using the SVM classifier. For the angle 

feature, the point feature histogram (PFH) by Rusu et al. (2009) was applied to describe a 

local point cloud that represented the angular characteristic of the point. The HSV space was 

used to generate nine-dimensional features by calculating the mean of the 3D vector and three 

× three symmetric matrix covariance. For the shape feature, a D2 shape function (Osada et 

al., 2001) was applied to compute the distances between every pair of points from _{k}, and 

a 30-bin histogram of these distances was formed.  
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3.8. Monitoring and Mapping with Robot Swarms for Agricultural Applications 

The collective monitoring and mapping behaviours were performed using UAVs in 

simulation and applying various bio-inspired algorithms. Several configurations of the 

system were discussed as follows: 

3.8.1. On-board vision for weed detection and navigation 

The UAVs from Bonirob were used to detect and remove weeds with a protective 

cover equipped with artificial lighting and cameras (Nieuwenhuizen, et al., 2007). The 

speeded-up robust features (SURF), support vector machines (SVM), and bag-of-visual-

words clustering were applied to classify weed patches and overcome intense light 

occurrences and shadows from sunlight. Then, the approaches were integrated with a sliding 

window technique for the whole image detection and convolutional neural networks (Figure 

12). Furthermore, Otsu’s system and the Hough transform were united to search crop rows 

in the field.   

 

Figure 12. Left: Illustration on detection and classification of sugar beets and potatoes using a convolutional 

neural network. Right: a close-up view of the PrecisionScout UAV applied within the SAGA experiment 

(Albani et al., 2017). 

3.8.2. Hardware enhancement 

The UAV was a quadcopter type and could fly for up to 30 minutes using a single 

charge battery and had vital features such as five inertial measurements (IMUs), a triple 

redundant autopilot, and RTK-GPS. It also consisted of radio-communication between 

various UAVs using ultra-wideband (UWB) technology, which offered similar time self-

localization based on stationary beacons. The NVIDIA Jetson3 platform design was used to 

support using the same processor for movement control and machine vision (Albani et al., 

2017). 
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3.8.3. Baseline simulation of field monitoring 

Field monitoring consisted of patrolling the field and sensing the weed's existence 

and position. It was assisted by utter positioning systems that permit georeferencing and 

strategizing of the optimal path, whereby the friendliest approach was following a zigzag 

course. This study applied an exponential average model detection as a weed monitoring 

model to test different monitoring strategies.  

4. Challenges in the Development of Automation and Agribots in Agriculture Sectors 

Based on the four different R&Ds that have been discussed, it was found that these 

two areas, agribots and automation are necessary to be implemented in developing countries 

within the next 10–30 years based on overcoming labour shortages, the increase of prices in 

agriculture tools and supplies, and to fulfil the fast-growing global demand for food. The 

current survey shows that the world should increase its agriculture yield to supply the 

booming population by 2050. The labour shortage is due to the following reasons 

(Sampoornam et al., 2017); 

• Industries exist in town areas. 

• Development of digital technology companies will attract young minds. 

• Maintenance of agricultural lands is a tough job. The farmers must spend money and 

time looking after their agricultural lands. 

• Reduction in agricultural pay. 

The countries' governments should take appropriate action plans and provide 

monetary support to the agriculture sectors to enhance the progress of automation and agribot 

adaptation in agriculture fields. Furthermore, failures to reach the implementation stage of 

these two areas, agribot and automation, have been observed in the last three decades, such 

as harvesting, guidance and navigation, and vegetable and fruit grasping (Bechar & 

Vigneault, 2016). As for now, the main reasons for these botches have been: the high cost of 

developing the system; failure to perform the intended task in the fields; less robustness of 

the structures; incapacity to regenerate similar work in different environments; and inability 

to fulfil economic, mechanical or industrial features (Vidoni et al., 2015). The use of 

automation and agribots in the agricultural sectors shall conform to the following directions: 

i. The unpredictable need for deploying explicit produce must be well-thought-out 

at the beginning. 

ii. The agricultural work and its modules should be practical to use with the present 

technology available, the obligatory technology application, and the complication 

subjected to the end users. 

iii. The total expenses of these alternative two areas should be less than the projected 

revenue. Nevertheless, it is not necessary to be the most money-making option 

(Bechar & Vigneault, 2016). 
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5. Conclusions 

The implementation of Industry 4.0 or Agriculture 4.0 is in progress and needs more 

effort to apply it in agriculture practices successfully. This study's agribot and automation 

applications align with the IR 4.0 concept, whereby various smart technologies and robotics 

are being produced and practiced in the agriculture sector. The agribots and automation are 

complex because they are developed from different sub-systems or modules that must be 

incorporated and properly synchronised to operate jobs entirely and transfer the requisite data 

successfully. The amalgamation requires considering cycle times, time interruptions, and the 

physiognomies of connection between all sub-systems or modules. The adaptation of agribots 

and automation systems in agricultural environments needs extra attention to several issues; 

(i) The developed technology must tackle challenging problems, including continuous 

varying conditions; the capriciousness of the products and environment; and intimidating 

surroundings such as sunlight radiation, shadow, dust, high temperatures, and humidity. (ii) 

The growth of intelligent systems is essential to obtain successful tasks in different field 

environments. (iii) The detailed economic calculation of the routine agricultural aspects 

should be considered to ensure the realistic design and practicality of different configurations 

of agribots. (iv) The application of agribots should be adapted in areas where other methods, 

such as mechanical or automatic tools, have limited chances to be operated or the agribots 

have an advantage in marginal utility over them. (v) An intrinsic safety and responsible 

practice is the most crucial facet that gives allowance and assurance to the agribots to be 

operated in open farms.  
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