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Abstract: Rice (Oryza sativa L.) is an essential staple food not only for Asians but also for 

people worldwide. However, weeds in rice fields can cause yield reduction due to their 

tendency to compete for resources. These significant biological obstacles can potentially 

cause complete yield loss if inappropriately managed. In addition, future climate change can 

cause rice weeds to become more competitive against cultivated rice plants by providing new 

favourable conditions for the unwanted species to expand aggressively. As the effect of 

climate change on rice weeds has been studied, the abiotic parameters, including carbon 

dioxide concentration, atmospheric temperature, drought, and soil salinity, can be used to 

construct predictive modelling to forecast rice weed infestation. Suppose the weed invasion 

in rice fields can be predicted accurately based on the weather information. In that case, the 

farmers can prepare the countermeasure early to avoid high yield loss. However, some 

challenges must be faced by the researchers as the weed invasion depends not only on the 

climate alone. This review summarises the effect of climatic variation on weed infestation in 

rice fields. It also discusses how predictive modelling had been developed based on the 

information on the environmental conditions.  
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1. Introduction 

Rice is Malaysia's third most significant crop and one of the world's most important 

food sources (Hakim et al., 2010). However, weed is wreaking havoc on rice production 

worldwide (Hakim et al., 2013). In addition to increased weed development and altered weed 

flora, climate change's direct effects on rice plants may harm rice growth and production 

(Prasad et al., 2017). Climate change, including rainfall, daylight hours, temperature, relative 

humidity, and drought season length (Alam et al., 2014), can affect weed invasion and crop-

weed competition, favouring weeds due to their better tolerance (Iqbal et al., 2020). Climate 

change is a severe issue that can potentially alter the natural phenological features of plants 

and weeds, as evidenced by the discovery of new species as alien species (Roslim et al., 

2021). Farmers fail to be aware of and take safeguards in case of weed invasion prediction 

due to a lack of understanding of weather conditions (Rahman et al., 2020). Furthermore, the 

dynamic shift in quantity and dominance of weeds makes invasion prediction for the coming 

season more difficult (Juraimi et al., 2013). 

 Several researchers have successfully developed predictive models for rice yield 

forecasting based on weather variables. Artificial neural network-based localised models 

were built to estimate rice production in a study conducted in South Korea. The study's key 

characteristic was integrating the spatial interpolation technique with the statistical crop 

model (Park et al., 2018). Meanwhile, a study conducted in West Bengal, India, discovered 

that the detrended production index could estimate wet-season rice yield using multiple 

regression analysis based on maximum temperature, rainfall, and relative humidity (Biswas 

et al., 2017). Another study also proved that the random forest method had greater accuracy 

than supporting vector regression for yield prediction for three types of rice cultivars for 

different districts in Bangladesh based on six years of weather parameters and rice production 

(Rahman et al., 2020).  

Thus, a similar method also may be implemented to develop a predictive model for 

forecasting weed population in rice fields based on weather parameters. With the help of 

remote sensing technologies, more data can be collected and analysed quickly by using 

current powerful modern computers. Forecasting weed infestations based on climate change 

can provide farmers with an early and real-time warning system, allowing them to take 

appropriate action. The impact of climate variation on weed infestation in rice fields is 

summarised in this review. It also addresses how environmental data can be used to construct 

predictive modelling and the obstacles that this entails. 

2. Rice, Weed and Climate Change 

2.1 Rice Farming 

Rice is a staple food in most countries and serves as a source of sustenance for the 

inhabitants (Rahim et al., 2017). Rice has long been a staple of daily life in Southeast Asian 

countries, including Malaysia (Rahim et al., 2017). Farmers in Malaysia's northern and 
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eastern regions, particularly Kedah and Kelantan, plant rice in large quantities due to the 

abundance of flat, lying, flat ground (Norasma et al., 2020). Wetland rice farming requires a 

constant, plentiful freshwater supply and low and flat ground (Norasma et al., 2020; Simma 

et al., 2017).  

A study divided Rice land habitats into four categories: irrigated, rainfed lowland, 

upland, and deep-water (Khush, 1997). Irrigated rice is the principal technique farmers use 

since it covers a larger area and produces more rice than other rice areas (Juraimi et al., 2013). 

Around 57 % of Peninsular Malaysia's rice output comes from 10 granary areas with 

sophisticated irrigation and drainage systems (Dilipkumar et al., 2017). However, changes in 

rainfall patterns worldwide due to climate change have threatened water supplies and rice 

productivity (Simma et al., 2017). 

Rice production must be sustained because it is the primary food source for most of 

the world's population (Rahim et al., 2017). Rice production also helps farmers' social and 

economic well-being by giving them employment and opportunity (Rahim et al., 2017). 

Research anticipated that rice demand would grow faster than output (Paiman et al., 2020). 

The Malaysian government purchased rice from several nations to compensate for a shortfall 

in home production (Dilipkumar et al., 2017). Furthermore, poor weed control can diminish 

rice output (Norasma et al., 2020).  

2.2 Weeds in Rice Farming 

Weeds have always been an issue in ancient times (Paiman et al., 2020). Weeds are 

unwelcome plants that grow alongside crops (Galal & Shehata, 2015; Paiman et al., 2020). 

Weed infestations have a devastating impact on crop productivity and yields (Pantazi et al., 

2016). During the crop-growing season, they interfere with the field activities of rice 

production systems (Talla & Jena, 2018). In most cases, weeds take advantage of disturbed 

environments that allow them to utilise available resources and flourish abundantly (Paiman 

et al., 2020). They compete with crops for all resources, such as nutrients, light, space, and 

water, which harms agricultural output (Galal & Shehata, 2015; Talla & Jena, 2018). Weeds 

can also have allelopathic effects on rice plants, decreasing plant height and dry weight 

parameters and inhibiting crop growth and development (Ismail & Siddique, 2012).  

Furthermore, the current practice employs homogenous herbicide application, 

resulting in severe environmental damage and low crop field productivity (Pantazi et al., 

2016). A uniform rate of herbicide spraying across the entire field can potentially lead to 

excessive herbicide usage as only specific area of the rice farm is invaded by weeds (Rosle 

et al., 2021). In addition, most farmers today use more herbicides than the manufacturer 

recommends to achieve unfailing results for controlling weed growth (Mohammadzamani et 

al., 2009).  

The excessive usage of herbicides can affect soil fertility and water quality. Soil 

toxicity caused by herbicides can reduce the development of micro- and microorganisms in 
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the soil, including earthworms and beneficial microbes that change the soil's nutrient status, 

soil properties, plant health, and agricultural productivity (Hasanuzzaman et al., 2020). These 

herbicide residues can pose substantial risks even at low concentrations in the aquifer and 

water bodies. This severely threatens water quality parameters and results in the drastic 

extinction of aquatic life, including fish, frog, oyster, algae, and plankton (Hasanuzzaman et 

al., 2020). 

Thus, site-specific weed management minimises herbicide usage and reduces input 

costs. According to a study, employing a digital management map (DMM) for variable rate 

application (VRA)  can result in up to a 13% reduction in herbicide application costs when 

compared to a homogenous herbicide application rate for the entire selected field 

(Mohammadzamani et al., 2009). 

In Malaysia, depending on the planting method, season, location, rice cultivars, 

growth rate, predominant weed flora, weed density, management practices, and infestation 

duration, the rice yield losses caused by weeds have ranged between five and 85% 

(Dilipkumar et al., 2020). The yield loss caused by grasses, broadleaved weeds, and sedges 

was estimated to be 41, 28, and 10%, respectively (Juraimi et al., 2013; Karim et al., 2004). 

Climate, weed species and density, rice varieties, growth rate, management strategies, and 

the rice ecosystem all play a role in yield losses (Juraimi et al., 2013). Weed control is also 

more critical in direct-seeded systems than transplanted systems because weeds can develop 

simultaneously or before rice plants in direct-seeded systems, causing severe competition 

(Galal & Shehata, 2015). 

Different types of grasses, sedges, and broadleaf weeds make up the weed flora 

population in the rice field (Paiman et al., 2020). Sedges are the second most abundant 

principal rice weeds behind grasses (Yaduraju & Mishra, 2008). Sedges were the most 

frequent weeds throughout the primary season, followed by broadleaved weeds and grasses 

(Juraimi et al., 2010). Grasses are usually the most prevalent early in the season, whereas 

sedges and broadleaf weeds take over (Yaduraju & Mishra, 2008). Some examples of 

common rice weeds in Malaysia are presented in Table 1, with five weed species for each 

type.  

Table 1. Some common weed species in rice fields in Malaysia (Hakim et al., 2013; Mansor et al., 2012). 

Weed group Scientific name Common name Life cycle 

Grasses 

Leptochloa chinensis Feather grass Annual 

Echinochloa crusgalli Barnyard grass Annual 

Echinochloa colona Jungle rice Annual 

Oryza sativa complex Weedy rice Annual 

Ischaemum rugosum Wrinkled grass Perennial 

Sedges 

Fimbristylis miliacea Lesser fimbry Annual 

Scirpus grossus Creater club-rush Perennial 

Cyperus iria Grasshopper’s cyperus Annual 

Cyperus difformis Small-flowered umbrella plan Annual 
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Weed group Scientific name Common name Life cycle 

Scirpus juncoides Bulrush Annual 

Broad-leaved 

Ludwigia hyssopifolia Seedbox Annual 

Sphenoclea zeylanica Gooseweed Annual 

Monochoria vaginalis Pickerel weed Annual 

Sagittaria guyanensis Lesser arrow-head Perennial 

Limnocharis flava Yellow bur-head Perennial 

 

2.3. Climate Change Effects on Rice Weeds 

Agriculture is highly climate-dependent (Alam et al., 2014). Besides agronomics and 

genetic factors, climate change has a long-term impact on crop output and productivity 

(Stuecker et al., 2018). Moreover, it has been demonstrated that exogenous forcing reduces 

the effects of genetics (Bell et al., 1995). The impact of climate change may directly or 

indirectly influence the physiology of plants (Bir et al., 2018). According to Alam et al. 

(2014), the effects might vary depending on the place, period, and crop. A study has stated 

that climate influence on rice production differs significantly by location and is strongly 

seasonally modulated (Stuecker et al., 2018). Malaysia is also no exception. Modern climate 

change caused by human activities, like emissions of greenhouse gases, aerosols, and land 

use changes, substantially impacted Malaysia's agriculture (Alam et al., 2014; Bir et al., 

2018).  

Several factors, including the changes in atmospheric CO2 levels, rainfall amount, 

daylight hours, temperature, relative humidity, and the length of the drought season, are some 

of the abiotic conditions that can affect plant physiology (Alam et al., 2014; Bir et al., 2018). 

Soil salinisation in rice fields, especially near the coastal areas, is also an abiotic factor 

affecting plant growth (Dasgupta et al., 2018). These factors highly influence the dynamics 

of weed species, distribution, and competitiveness within weed populations and crops (Bir et 

al., 2018).  

The degrees of weed invasion and crop-weed competition is anticipated to shift as the 

environment changes (Jinger et al., 2017). Because many weeds resist climate change and 

have superior adaption, this change will likely benefit them (Iqbal et al., 2020). Under water 

stress, high temperatures, and light-intensity circumstances, C4 weed species are expected to 

adapt better than C3 rice plants (Karki et al., 2013; Rodenburg et al., 2011). The expense of 

weed control could also increase due to the changes in weed growth patterns caused by 

climate change (Kwon et al., 2013).  

2.3.1 Water Regime 

In the area where fresh water is available, farmers use the traditional irrigated method 

to flood the rice field (Chan et al., 2012). Moreover, for places with less water, farmers can 

implement the rain-fed rice approach or use aerobic rice culture on their farms (Akinbile et 

al., 2011; Girmay Reda & Tripathi, 2016). However, with the uncertainty of climate change, 
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water availability might be interrupted, which can cause drought, and some places may 

receive higher rainfall amounts than expected, leading to flooding. The usual agriculture 

practices of a local rice farm may need to be altered to adapt to the changing environment, 

including weed management. Water regime treatments significantly impacted the types of 

weeds (Abou El-Darag et al., 2017).  

An experiment conducted with soil moisture stress conditions found that weed density 

increases under moisture-stressed conditions (Ghimire et al., 2022). Annual weeds with 

broadleaf species were the most observed under soil moisture stress. Ageratum conyzoides, 

Drymaria cordata, Digitaria spp, Lindernia nummularia, and Bidens Pilosa are weed species 

that have increased with the deficiency of soil moisture (Ghimire et al., 2022). Another 

related study in field conditions also found that the dry weight of Echinochloa crus-galli was 

significantly promoted under water shortage (aerobic conditions) (Abou El-Darag et al., 

2017). At the same time, Cyperus difformis increased dramatically under saturated and 

flooded conditions. Juraimi et al. (2011) also stated that weed population and biomass under 

continuous field capacity conditions were higher than in continuously flooded conditions. 

Even though the value of summed dominance ratio (SDR) for broadleaf weeds (e.g., 

Monochoria vaginalis and Limnocharis flava) was reduced by around 13.0 – 25.8% under 

field capacity conditions, the SDR value increment for grass weeds (e.g., Echinochloa crus-

galli, Echinochloa colona, and Leptochloa chinensis) was tremendously promoted up to 

120.6 – 142.1% (Juraimi et al., 2011). 

A greenhouse study was conducted to determine the effect of aerobic and saturated 

conditions on the growth and reproduction of Leptochloa chinensis (Awan et al., 2015). The 

growth parameters were higher in aerobic than saturated conditions when Leptochloa 

chinensis was cultivated without rice. Under water-limited environments, Leptochloa 

chinensis can grow taller and generate more biomass of plants (107%) and inflorescence 

(183%) under aerobic conditions as opposed to saturated ones (Awan et al., 2015).  

However, a study done on Echinochloa crus-galli found that the growth and seed 

production of Echinochloa crus-galli were higher in flooded conditions than in aerobic 

conditions when grown alone without rice plant interference (Chauhan & Abugho, 2013). 

The aboveground shoot biomass and seed number production of Echinochloa crus-galli 

plants were significantly higher in flooded conditions than in aerobic conditions at 46-47% 

and 26-44%, respectively. Both studies by Awan et al. (2015) and Chauhan & Abugho (2013) 

showed no significant difference between water treatments when grown with rice 

interference. 

2.3.2 Air temperature 

As a result of climate change, global warming impacts rice-paddy ecosystems, mainly 

through changes in plant growth rates, affecting both rice crop output and biodiversity (Kwon 

et al., 2013). Elevated temperatures give weeds a significant advantage, adversely affecting 

rice production (Bir et al., 2018). Weeds may grow exponentially due to temperature 
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changes, with some species spreading to higher latitudes and altitudes (Mahajan et al., 2012). 

Although there is minor temperature variability, scientists also estimated that if warming 

remains unabated under business-as-usual emissions (RCP8.5), temperatures may rise by 

four degrees Celsius by the end of the century, limiting rice production (Stuecker et al., 

2018). 

Rising temperatures enhance weed growth in paddy fields. An experiment was 

conducted in a temperature control chamber to investigate the impact of temperature on rice 

weed (Ghimire et al., 2022). The findings demonstrated that weed density rises at 2oC and 

3oC compared to ambient temperature. Annual weeds of broadleaf species were the most 

frequently observed in the rice field under high-temperature conditions. Rice weed species, 

including Digitaria spp, Monochoria vaginalis, Polygonum hydropiper, Bidens pilosa, 

Dopatrium junceum, and Lindernia spp., demonstrate an increase in weed density at 

temperatures up to 2oC higher (Ghimire et al., 2022).  

A study was done in Daejeon, Korea, to investigate the growth behaviour of rice 

weeds in phytotron under field conditions and also found that the rice weeds grew faster with 

the temperature rise (Bir et al., 2018). At an ambient temperature of +3.4°C, Ludwigia 

prostrata showed a significant dry weight and leaf area increase, 211.8% and 214.3%, 

respectively. Sagittaria sagittifolia, a perennial weed, grew at a 124.8% higher dry weight at 

+3.4°C than ambient temperature (Bir et al., 2018).   

To assess the impact of increased temperature on rice-weed competition, three years 

of pot experiments under phytotrons were carried out in Suwon, Korea (Song et al., 2021). 

Elevated temperatures promoted the competitiveness of water chestnut (Eleocharis 

kuroguwai) and late watergrass (Echinochloa oryzicola). Rice yield reduction of both weeds 

under high temperatures was mainly due to decreased rice panicle and increased weed 

competitiveness.  

Earlier germination and promoting germination range are some weed enhancement 

competitiveness under high-temperature conditions (Kwon et al., 2013). In comparison to 

species related to high germination temperatures (e.g., Cyperus rotundus at 46°C germination 

temperature), those with relatively lower germination temperatures (e.g., Bidens tripartita at 

24°C germination temperature) tended to have smaller leaves, shorter stems, and earlier 

flowering and germination periods (Kwon et al., 2013).  

2.3.3 Atmospheric carbon dioxide (CO2) 

Long-term human activity increased atmospheric carbon dioxide (CO2) from 371.82 

to 407.05 ppm between 2000 and 2018 (Anjali et al., 2021). By 2050, the CO2 level is 

predicted to rise by up to 5%, possibly even more, to 600–800 ppm (Korres et al., 2016). 

Fossil fuel combustion, deforestation, and strong demand for food have all been identified as 

the primary causes of the elevated CO2 level (Fogliatto et al., 2020). Increasing CO2 and 
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other climate change elements will have diverse effects on weeds, crops, and their 

interactions (Korres et al., 2017). 

Increased CO2 levels are likely to be most beneficial for C3 plants, whereas C4 plants 

will not likely be impacted because they already have metabolic processes to concentrate 

CO2 at the carboxylation site (Korres et al., 2016). A microcosm experiment found that 

increased CO2 encouraged the development of C3 upland rice under monoculture, not C4 

Echinochloa crus-galli (Tang et al., 2009). Another study was done with a 1:1 mixture in a 

paddy field supplemented with free air carbon dioxide enrichment (FACE, CO2 concentration 

+200 μmol mol-1) and also found elevated CO2 significantly increased rice's biomass, tillers, 

leaf area index (LAI), and net assimilation rate (NAR) while lowering those of Echinochloa 

crus-galli (Zeng et al., 2011).  

Weedy rice is also a C3 plant like cultivated rice, but weedy rice responds more toward 

the elevation of CO2. According to a study, increasing CO2 (700 ± 50 μmol mol−1) extended 

seed bank viability, increased weedy rice biomass, and seed shattering (Balbinot et al., 2022). 

Under a CO2 concentration of 500 ppm, biomass production of weedy rice increased with 

increasing tillering (53.0-92.6% increment), affecting inter-specific competition in the rice 

field (Anjali et al., 2021). Increased CO2 levels also result in higher rates of photosynthesis, 

seed production, and spikelet sterility in weeds when treated with CO2 levels of 400 and 700 

μmol mol-1 (Piveta et al., 2020). Rising CO2 levels in regions where weedy rice is prevalent 

may enhance its seed bank persistence and potential competition, adversely affecting rice 

production (Balbinot et al., 2022). 

Even though many weed species with a C4 photosynthetic pathway respond to 

atmospheric CO2 less than C3 crops, a mix of C3 and C4 weeds is present in most agronomic 

conditions (Korres et al., 2016). Higher CO2 levels stimulate biomass production of both C3 

and C4 species  (Korres et al., 2017). Nevertheless, findings from numerous research show 

significant and vast variability in how the weed community reacts to high CO2 due to 

interactions with temperature, light, water, and nutrition (Korres et al., 2016). According to 

research conducted in Jabalpur, India, a few weed species, including Dactyloctenium 

aegyptium and Echinochloa colona, responded to high CO2, but Cyperus rotundus and 

Eleusine indica did not (Mahajan et al., 2012).  

It has also been demonstrated that elevated CO2 levels increase weeds' tolerance to 

herbicides (Mahajan et al., 2012). Elevated CO2 makes Echinochloa colona more resistant 

to the ACCase-inhibitor cyhalofop-butyl (Refatti et al., 2019). Raised CO2 levels might affect 

herbicide efficacy, depending on weed species. Opposing Echinochloa colona, weedy rice's 

tolerance to imazethapyr was unaffected by increasing CO2 (Piveta et al., 2020). 
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3. Machine Learning  

Predictive modelling is a part of machine learning methodologies that involve a 

learning process by which to learn from training data to perform a task (Liakos et al., 2018). 

The data used in machine learning consist of a set of features that can be nominal, binary, 

ordinal or numeric (Liakos et al., 2018). The selection and transformation of features can be 

made automatically using machine learning techniques (Vali et al., 2020).  

According to Liakos et al. (2018), The performance of the machine learning model 

in a specific job is measured using a performance metric that improves over time as the model 

gains more experience. Various statistical and mathematical models are used to calculate the 

performance of machine learning models and algorithms. The trained model can be used to 

classify, predict, or cluster new samples (testing data) when the learning process is completed 

using the expertise gained throughout the training phase.  

Machine learning tasks are often divided into broad categories based on the type of 

learning (supervised/unsupervised), learning models (classification, regression, clustering, 

and dimensionality reduction), or the learning models used to complete the task (Liakos et 

al., 2018; Mohidem et al., 2021). A typical machine learning is visualised in Figure 1. 

 
Figure 1. A typical machine learning approach. Retrieved from Liakos et al. (2018). 

The researchers used supervised, unsupervised, and semi-supervised learning 

methodologies for machine learning (Hasan et al., 2021). In supervised learning, data is given 

with examples of inputs and outputs to develop a general rule that maps inputs to outputs 

(Liakos et al., 2018). To predict the missing outputs (labels) for the test data, the acquired 

expertise (trained model) is applied in supervised learning. On the other hand, unsupervised 

learning does not differentiate between training and test sets since the data is unlabeled 

(Liakos et al., 2018). The learner analyses input data to uncover hidden patterns.  
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3.1 Soft Computing Technique  

Soft computing is a set of highly consistent methods at the target level and distinctive 

at the method level (Gupta et al., 2018). Unlike traditional computing (complex computing), 

soft computing techniques tolerate ambiguity, imprecision, and partial truth and do not 

require rigorous mathematical definitions. (Royo-Esnal et al., 2020). Weed modellers are 

particularly interested in algorithmic modelling because it breaks from an 'ideal system' 

characterised by complete and accurate information. Instead, it focuses on a natural, 

unpredictable, and complex system (Li et al., 2019). Soft computing-based models can deal 

with such systems in this regard (Royo-Esnal et al., 2020).  

Soft computing techniques-based approaches have lately been offered as alternate 

models to address some issues (Royo-Esnal et al., 2020). Weed emergence modelling has 

recently benefited from new soft computing techniques such as artificial neural networks 

(Movassagh et al., 2021). Soft computing techniques are well renowned for their flexibility 

and uncertainty tolerance. However, they have some drawbacks, such as a low extrapolation 

capability (Royo-Esnal et al., 2020). Hence, a diverse set of observed circumstances is 

required to capture data variability. Artificial neural networks as a modelling framework and 

genetic algorithms as optimisation engines have been proposed as soft computing tools for 

weed emergence modelling (Royo-Esnal et al., 2020).  

3.2. Artificial Neural Network 

Artificial neural network (ANN) models are based on the behaviour of biological 

networks in human and animal brains. They can simulate complex processes like pattern 

production, cognition, learning, and decision-making (Liakos et al., 2018; Royo-Esnal et al., 

2020). An artificial neural network (ANN) is a simplified model of a biological neural 

network structure made up of interconnected processing units arranged in a specified 

topology (Liakos et al., 2018). 

ANNs have been widely employed in various knowledge-based applications, and they 

do not require any user-specific problem-solving algorithms instead of learning from 

examples (Movassagh et al., 2021). ANNs are typically depicted as interconnected 

processing units that communicate by exchanging signals (Royo-Esnal et al., 2020). The 

connections have numeric values modified using a predefined algorithm during the training 

phase. An ANN model's architecture, learning process, and activation functions are all factors 

to consider (Royo-Esnal et al., 2020). 

ANNs have supervised models commonly used to solve problems like regression and 

classification (Liakos et al., 2018). Radial basis function networks, perceptron algorithms, 

back-propagation, and robust back-propagation issues are some learning techniques typically 

employed in ANNs (Liakos et al., 2018). Yilmaz et al. (2022) implemented a feed-forward 

ANN with three layers: an input layer, a hidden layer, and an output layer. The feed-forward 
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network's structure, which consists of neurons connected via connections, is illustrated 

(Figure 2). Hidden neurons serve as the connection between the first and last layers. 

 
Figure 2. The basic design of a standard three-layered feed-forward neural network. Extracted from Yilmaz et 

al. (2022). 

Deep ANNs, like regular ANNs, comprise numerous processing layers that are used 

to learn complicated data representations at multiple levels of abstraction (Liakos et al., 

2018). Deep ANNs are also known as deep learning (DL) and deep neural networks (DNNs) 

(LeCun et al., 2015). They are a relatively recent area of machine learning research that 

allows for building computational models (Kamilaris & Prenafeta-Boldú, 2018; Liakos et al., 

2018). DNNs are just ANN with additional hidden layers between the input and output layers, 

and they can be supervised, partially supervised, or even unsupervised (Liakos et al., 2018). 

One of the critical advantages of DL is that the feature extraction process is sometimes 

conducted by the model itself (Liakos et al., 2018). The convolutional neural network (CNN) 

is a typical DL model in which feature maps are retrieved by conducting convolutions in the 

picture domain (Liakos et al., 2018). Other common DL architectures include deep 

Boltzmann machines, deep belief networks, and auto-encoders (Liakos et al., 2018).  

3.3 Predictive Modelling 

Various modelling methodologies and tools for predicting and mapping the projected 

ranges of habitat appropriateness of various invasive weeds have been created (Clements et 

al., 2014). These models have assisted in determining the future regional distributions of 

these species in response to various conditions, including climate change (Lundy et al., 

2014). Niche-based species distribution models allow researchers to project modelled niches 

into new regions under future climate change scenarios and eventually estimate the 

geographical distribution of appropriate environments (Clements et al., 2014).  

Predictive models are essential in changing climate for studying weed responses in 

rice fields. Since climate change modelling is constantly fine-tuned, predictive models for 
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weed responses must be updated simultaneously (Clements et al., 2014). Predictive 

modelling and a better understanding of weed biology and ecology should help early warning 

systems track changes in weed distributions and their effects due to climate change (Clements 

et al., 2014; Shanmugapriya et al., 2019). However, the ability to predict future changes in 

weed distribution must be complemented by sufficient resources to develop, implement, and 

monitor these technologies to prevent new weed invasions (Clements et al., 2014). 

4. Modeling in Rice Weeds 

4.1. Weed Emergence and Dynamic Model  

Weed emergence models are valuable tools for analysing emergence dynamics in the 

field (Royo-Esnal et al., 2020). A weed emergence model was developed using a 

mathematical model that describes field emergence data as a function of field environmental 

variables, notably temperature and precipitation (Ramesh et al., 2017; Royo-Esnal et al., 

2020). Photoperiod and soil management practices can also influence field emergence 

dynamics, which can be a valuable component in improving model accuracy (Royo-Esnal et 

al., 2020).  

Nonlinear regression (NLR) techniques were used to develop numerous emergence 

models (Pedroso et al., 2019; Song et al., 2021). According to Royo-Esnal et al. (2020), 

Weibull and its variants have been widely utilised for parameterisation in nonlinear 

regression models, while others, such as Gompertz and Logistic, have also proved successful. 

Probit regression, Boltzmann, Chapman and Hill functions, Gaussian, Linear, General-

Logistic, and Wang and Engel functions have been the least used models.  

Because they are simple to create and apply, NLR sigmoidal-type models based on 

cumulative thermal or hydrothermal time have become the most prevalent strategy (Royo-

Esnal et al., 2020). Empirical NLR models use environmental variables, including 

temperature, soil moisture, and, most recently, light, to forecast both the timing and quantity 

of cumulative proportion (Royo-Esnal et al., 2015). They are based on the thermal or 

hydrothermal-time principle, which states that seeds must accrue some growing degree days 

(°Cd) before germination and emergence can be completed (Royo-Esnal et al., 2020). 

4.2. Rice Weed Competition  

A helpful resource for making integrated weed management decisions is an empirical 

model of the effects of weed interference on crop yield. Various mathematical weed-crop 

interference models have been created to measure competitive interactions and estimate 

production loss, including a rectangular hyperbolic equation. The weed density-based 

rectangular hyperbola model has been widely used to predict crop yield losses, including rice, 

wheat, soybean, and maise (Mamun, 2014; Moon et al., 2014). The interference evaluation 

between weed species and crops was done either by a single or several weed species. Even 
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more, a study has been done by using single weed species. However, several weed species' 

effect on crop yield is more likely to represent the natural field situation (Mamun, 2014).  

A field experiment by Mamun (2014) in direct-seeded rice field cultivation found that 

a rectangular hyperbolic equation fitted well to predict rice yield as a function of weed 

densities. The economic thresholds (ET) were also successfully estimated by considering the 

weed control cost and rice yield price. He found that the ET values of weeds were 4.72–9.17 

plants m-2 in a direct-seeded rice field by considering the weed competitivity, weed control 

costs, and price of grain.  

Like Mamun (2014), a study by Song et al. (2021) also used the rectangular 

hyperbolic model but under elevated temperature. Song et al. (2021) found that water 

chestnut (Eleocharis kuroguwai) and late watergrass (Echinochloa oryzicola) both exhibited 

an increase in competitiveness as a result of the elevated temperature. The relationship was 

well demonstrated by rectangular hyperbolic equitation, which can be used to predict the 

level of weed interference on rice grain yield under various elevated temperatures.  

Besides climatic variation, another combined model using herbicide dose on rice-

weed competition has also been developed. A rectangular hyperbolic model can estimate an 

optimum herbicide dose for rice farming weed density. The model was used with parameter 

estimates to forecast rice yield and determine the quantities of flucetosulfuron and 

azimsulfuron needed to reduce rice yield loss brought on by Echinochloa crus-galli and 

Echinochloa kuroguwai, respectively, to an acceptable level (Moon et al., 2014). 

Weed-crop interference models, especially the rectangular hyperbolic model, help 

investigate competition relationships between weeds and rice, which can be utilised to 

support decision-making. The models can also predict crop yield and determine the economic 

threshold levels, especially for weed management in direct-seeded rice cultivation. Besides, 

the combined model developed different climatic conditions (e.g., under elevated 

temperature) can also provide predictive information for rice grain yield caused by 

environmental stress and weed interference under future climate conditions to prevent high 

yield loss.  

4.3. Image Modelling 

Weed emergence models can potentially be valuable tools for automating weed 

control procedures. However, gathering the necessary data (such as through seedling counts) 

is labour-intensive and time-consuming. Suppose equivalent weed emergence models could 

be produced using image-derived data rather than physical counts. In that case, the data 

generated may be increased to provide more reliable models (Piskackova et al., 2020). 

Remote sensing technologies come in handy.  

A robust approach for image classification has been developed using DL, which is 

employed in many disciplines of agriculture (Kamilaris & Prenafeta-Boldú, 2018). Semantic 

segmentation aims to classify pixel-by-pixel (Kamath et al., 2022). A class is chosen for each 
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pixel from a predefined list of classes. Semantic segmentation employs fully convolutional 

networks (FCNs) (Kamath et al., 2022). These FCNs are algorithms that automatically learn 

features and construct forward and reverse processes from beginning to end.  

With promising results that have an accuracy of over 90%, Kamath et al. (2022) 

successfully classified images of two types of weeds (sedge and broad-leaved weed) under 

natural conditions by utilising DL-based semantic segmentation. Semantic segmentation 

models used in the study were PSPNet, UNet, and SegNet, where PSPNet had the best 

performance. This finding promotes the invention of in-field weeding robots or machines and 

in-field herbicide sprayers for rice fields that utilise optimal herbicide usage, helping promote 

sustainable agriculture and site-specific weed control.  

Using conventional RGB cameras, Piskackova et al. (2020) demonstrated that weed 

emergence forecasting models can be created using a simple image analysis method based 

on time-dependent changes in weed cover comparable to models developed using seedling 

counts. The relative emergence of actual seedling counts was used to confirm the models 

created using cumulative pixel data. The crop and weeds were segmented using three 

semantic segmentation models: SegNet, Pyramid Scene Parsing Network (PSPNet), and 

UNet. This method will benefit researchers working on weed emergence models, offering a 

potentially low-cost and user-friendly data collection tool.  

Besides RGB imaging, one of the potential methods for automatically differentiating 

between crops and weeds is hyperspectral imaging. Vegetation may now be categorised and 

mapped at various taxonomic scales, frequently down to the species level, thanks to 

hyperspectral sensing, which analyses reflectance from RGB (visible spectrums) to 

shortwave infrared wavelengths (non-visible spectrums) (Sulaiman et al., 2022). A study 

found that six wavelengths (415 nm, 561 nm, 687 nm, 705 nm, 735 nm, and 1007 nm) from 

hyperspectral images of barnyard grass, weedy rice, and cultivated rice plant can achieve 

100%, 100%, and 92% of recognition rates, respectively (Zhang et al., 2019). Random forests 

and support vector machine models were used in the study as the classification models to 

discriminate rice and weeds based on spectral features.  

With the help of remote sensing and machine learning technologies, researchers and 

farmers can utilise site-specific weed management (SSWM), especially using the right 

amount of herbicide in the rice field. It will be of great help to the farmers in the future if 

there is a mobile interface in a smartphone app capable of real-time monitoring and warning 

of weeds in the rice field. 

5. Conclusions  

Climate change alters weed distribution in rice fields, affecting weed management as 

it depends on weed species' appearance and distribution. Predictive modelling can help 

farmers make an early countermeasure in weed management, including herbicide preparation 

based on weed type. Models based on local metrological data and weed emergence or 
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distribution can be constructed through machine learning. In the future, it is hoped that a 

holistic predictive model with high accuracy can be established in Malaysia. Still, it requires 

a considerable amount of historical information on weed surveys and metrological data on 

several areas with varying seasons, soil conditions, agriculture practices, and water 

management for scientists to develop a complete model that farmers can use around 

Malaysia. Using remote sensing technology for weed surveys and mapping in predictive 

modelling development can reduce the time and labour cost required instead of conventional 

weed counting surveys.  
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