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Abstract: Automatic plant growth monitoring has received considerable attention in recent 

years. The demand in this field has created various opportunities, especially for automatic 

classification using deep learning methods. In this paper, the efficiency of deep learning 

algorithms in classifying the growth stage of chili plants is studied. Chili is one of the high 

cash value crops, and automatic identification of chili plant growth stages is essential for crop 

productivity. Nevertheless, the study on automatic chili plant growth stage classification 

using deep learning approaches is not widely explored, and this is due to the unavailability 

of public datasets on the chili plant growth stages. Various deep learning methods, namely 

Inception V3, ResNet50, and VGG16, were used in the study, and the results have shown 

that these methods performed well in terms of accuracy and stability when tested on a dataset 

that consists of 2,320 images of Capsicum annum 'Bird's Eye' plants of various growth stages 

and imaging conditions. Nevertheless, the results have also shown that the deep learning 

methods have difficulty classifying images with a complex background where more than one 

chili plant was captured in an image. 
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1. Introduction 

Chili or scientifically known as Capsicum annum is one of high cash crops values in 

Malaysia (Yusuf et al., 2016), and it has been recognized as among the top tenth of self-

sufficiency ratio (SSR) with the highest import dependency ratio (IDR) of 73.6% 

Citation: Rozilan, D. M. M., Hanafi, 

M., Ali, R., et al. (2021).  Efficacy of 

deep learning algorithm in classifying 

chilli plant growth stages. Adv Agri 

Food Res J 2021; 2(2):a0000238. 

https://doi.org/10.36877/aafrj.a0000238 

mailto:danialmirza9296@gmail.com
mailto:marsyita@upm.edu.my


AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 2 of 18 

 

(Department of Statistics Malaysia, 2020). Capsicum annum 'Bird's Eye' and Capsicum 

annum ‘Red’ are among Malaysia's widely domesticated planted chili (Norfadzilah, 2018). 

Chili plants grow upright with green stem branches, and the leaves have a variety of colors, 

from light green to dark green (Suhaimi et al., 2016).  According to Haifa Group (2021), the 

growth stage of chili plants can be classified into four stages; the first stage is the stage of 

vegetative growth that is from planting or seeding to the first flowering. The second stage is 

the period from flowering to fruit set, and the third stage is from fruit ripening to the first 

harvest. The last stage is the period from the first harvest to the last harvest. The duration of 

each stage may vary according to the growing method, characteristics of chili variety, and 

climatic conditions (Haifa Group, 2021). The growth stage of chili plants is typically 

measured manually, as discussed by Sharma & Kumar (2017). The manual way of identifying 

growth stages is inconsistent because the human factor and the process are time-consuming 

(Kim et al., 2013). Nevertheless, the manual process still needs to be performed due to the 

requirement of different amounts of fertilizer and water for each growth stage, which is 

necessary for optimizing crop yields (Wayne, 2021).  

 In recent years, the automatic classification of the growth stage of plants using 

computer vision technology has received significant attention. This is because automatic 

plant growth classification or prediction is essential for analyzing growth patterns to aid the 

acceleration of plant cycles, the prediction of phenotypic traits, and the efficient execution of 

experiments (Yasrab et al., 2021). The classical computer vision approaches are based on 

conventional image segmentation or structural analysis. The aim is to find the region of 

interest or structure analysis based on lines, curves, pixel intensities, and differentials 

(Spalding & Miller, 2013). The examples of the classical approaches are optimal thresholding 

and probability distribution methods (Otsu, 1979; Bouman & Shapiro, 1994) and machine 

learning approaches (Othman et al., 2010; Yu et al., 2011). The plant growth prediction using 

machine learning approaches has received significant attention in macroscopic phenotypes 

studies (Li et al., 2020; Keller et al., 2018; Mochida et al., 2018; Van Dijk et al., 2021). Even 

so, the problem of achieving high accuracy is still the main issue. This is mainly due to 

complex backgrounds, various illumination effects, and image sizes (Anugraheni et al., 

2019). 

Furthermore, the best approach to extract distinguishable plant features that can 

produce high classification accuracy remains unestablished (Hao et al., 2020). The same 

situation for the study of chili plant growth classification using machine learning. For 



AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 3 of 18 

 

example, Suroso et al. (2016) showed that artificial neural networks and image processing 

methods could predict the required amount of water and fertilizer based on the plant image 

parameters. However, the result was only based on three stages of growth, and the used 

images were captured under a controlled environment (Soethe et al., 2016). 

Advance in data acquisition technology has created enormous opportunities to 

develop highly accurate and efficient classifiers such as deep learning classifiers. Deep 

learning refers to artificial neural network architectures with a significantly large number of 

layers of processing that can be easily adapted to changing environments (Learning & Rai, 

2021). There are four categories of deep learning methods, namely Convolutional Neural 

Networks (CNNs), Restricted Boltzmann Machines (RBMs), Autoencoder, and Sparse 

Coding (Guo et al., 2016). Among all the methods, Convolutional Neural Networks (CNNs) 

have been popularly used. A CNN consists of three main neural layers: convolutional layers, 

pooling layers, and fully connected layers. As discussed by Guo et al. (2016), there are many 

variations of the CNN methods, where the difference is basically in terms of the total number 

of convolutional layers. The CNN classifiers have demonstrated exceptional accuracy and 

precision in many agriculture applications (Khanramaki et al., 2021; Alhnaity et al., 2020; 

Ayan et al., 2020; Chouhan et al., 2019; Ferentinos, 2018; Habiba et al., 2019), including in 

the field of plant phenotyping (Fuentes et al., 2019; Wang et al., 2019; Subetha et al., 2021).  

Plant phenotyping is defined as assessing complex plant traits growth, resistance, 

architecture, physiology, and ecology by Li et al. (2015). Several works on plant phenotypes 

prediction based on spatial and temporal features of plant growth have been reported (Namin 

et al., 2018; Sakurai et al., 2019). Namin et al. (2018) reported that a combination of a multi-

model Convolutional Neural Network with Long Short-Term Memory (LSTM) approaches 

offers exceptional accuracy for plant phenotypes and genotypes prediction, which is helpful 

in the automation of plant production and care. Sakurai et al. (2019) studied the performance 

of LSTMs with an encoder-decoder model for predicting the growth of plant leaves, where 

they found that this approach has limited capabilities for several data sets. Nevertheless, the 

study on the prediction of chili growth stages using deep learning has yet to be explored. The 

studies related to chili plants classify nutrient deficiency and quality (Bahtiar et al., 2020; 

Sudianto et al., 2020). Moreover, automatic classification of chili plants' growth stage using 

the images captured with a complex background and under various imaging conditions such 

as different scales, various illuminations, and angles has not yet been studied. Inspired by 

this fact, the efficiency of high-performance CNN algorithms, which are EfficientNet, 
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VGG16, ResNet50, and InceptionV3, in classifying the stages of chili plant growth from the 

images with various imaging conditions is studied 

This paper is organized as follows. Section 2 describes the dataset used in the 

experiment that consists of chili growth images under an uncontrolled environment, followed 

by the explanations on VGG, ResNet50, InceptionV3, and EfficientNet architectures in 

Section 3. Section 4 presents the result and discussion of this study and conclusions in Section 

5. 

2. Materials and Methods 

2.1 Chilli Plant Growth Dataset 

This study's chili plant growth dataset consists of 2,320 images of Capsicum annum 

'Bird's Eye' plants. The images were captured at all growth stages, ranging from seedling to 

harvesting stages, as described in Table 1. The images were collected every week under an 

uncontrolled environment and various image acquisition parameters, as in Table 2, to reflect 

the real-life scenarios. These images were captured in an open space in Kuantan, Malaysia, 

using the Samsung Galaxy S10 Plus. The phone consists of triple cameras with a 12-

megapixel 12 mm wide-angle rear lens, a 12-megapixel telephoto lens, and a 16-megapixel 

ultrawide lens. The dimension of the produced images is 3024 x 4032 pixels. The parameters 

considered during image acquisition to create challenges for the classifiers are summarized 

in Table 2. These parameters are based on the situations when capturing the images in real-

life scenarios. 

Table 1. Chili growth stages (Majlis Ilmu, Kerajaan Negara Brunei Darussalam, 2018) 

Growth Stage Days 

Seedling and transplanting 0–30 

Vegetative 31–62 

Flowering 57–92 

Fruiting 88–120 

Table 2. Summary of the image acquisition parameters. 

Parameters Description 

Various distances  The distances of the camera facing the leaf range from 30 cm to 50 cm. 

Various views Three types of views were considered, namely top, side, and front views.   

Various illuminations The images were captured in the morning (8 AM to 9 AM) and afternoon 

(12 PM to 1 PM).  
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Figure 1. Some examples of the chili plant images used in the experiment. 

Chili plant images under extreme exposure, namely underexposed and overexposed, 

with a complex background, were also considered. The underexposed and overexposed 

effects are due to the various illumination effects in the morning and afternoon, which are 

influenced by various weather conditions during the 22 weeks of the data collection. Image 

acquisition settings were not changed during image acquisition. These images were captured 

from the chili plants in a rain shelter at the Faculty of Engineering, Universiti Putra Malaysia, 

as shown in Figure 2. The total number of images is 480. 

    

 

 

 

 

 

Figure 2. Some examples of images under extreme exposure.   

2.2 Experimental Setup 

In the experiments, the performance of the selected deep learning algorithms in 

classifying the chili plant growth stages was compared. All the algorithms were trained and 
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tested using the images from the developed dataset with a distribution of 80% and 20%, 

respectively. Hence, the total number of images used for training and testing for the images 

collected in Kuantan are 1,952 images and 488 images, respectively. The classification of the 

growth stage of chili plants is based on the weekly growth stages, which is based on the 

weekly data collection. As the data were collected for 22 weeks, 22 classes were used in the 

experiments, ranging from seeding to harvest. 

The experiments were executed using Python in a Jupyter notebook environment, 

running on Intel ® Core™ i5-5200U processor with a Turbo Core Technology Up to 2.7GHz 

and 8GB DDR3L RAM. Adam optimizer was also used to reduce loss due to inappropriate 

selection of learning rate and weights in the algorithm. According to Kingma et al. (2014), 

this optimizer is computationally efficient and well suited for significant problems in terms 

of data or parameters. The images used for training and testing were resized to 128 × 128 

pixels, and these images were selected randomly by python software. The selection of the 

input image size is based on the recommendation by Habiba et al. (2020) and Sujatha et al. 

(2021). The small image size should be used for optimizing classifier performance. Other 

than that, the batch size, which is the number of samples to be processed, is set to 32, and the 

total number of epochs that is the total number of iterations, is set to 10. 

2.3 Deep Learning Algorithm Architectures 

According to Chouhan et al. (2019), deep learning is a subset of machine learning. 

The architecture consists of many processing layers and optimizers that are suitable for 

efficiently classifying complex problems (Sujatha et al., 2021; Ferentinos, 2018).  Alhnaity 

et al. (2020) claimed that the complex models employed in deep learning could improve 

classification accuracy and reduce regression problems. In this study, the efficiency of four 

widely used deep learning algorithms, namely VGG16, ResNet50, Inception V3, and 

EffcientNet algorithms, in classifying the growth stage of chili plants is compared. The 

architectures of the selected deep learning algorithms are explained in the following 

subsections. 

2.3.1 VGG16 

Simonyan and Zisserman developed visual Geometry Group 16 or VGG16 (2015). 

This algorithm achieved 71.3% in the top five accuracy category and 90.1% in the top one 

accuracy when tested using the ImageNet dataset. The algorithm has shown good 

performance when classifying leaves or plants (Habiba et al., 2019; Rangarajan & 
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Purushothaman, 2020). The algorithm consists of 16 layers that combine 13 convolutional 

layers, five top pooling layers between the convolutional layers, and three fully connected 

layers (FC). In the convolutional layers, various feature maps are generated through the 

convolution of images using various kernels. The pooling layer is used to reduce the 

dimensions of feature maps and network parameters. A rectified linear activation function 

(ReLU) in the architecture is applied to the first two FC layers. This is because the function 

allows faster learning and decreases the likelihood of vanishing gradient problems. At the 

final FC layer, a softmax function is used to normalize the classification vector. The VGG 

model processes the input image and outputs as a vector of thousands of values. The vector 

represents the probability of classification for the corresponding class. Figure 3 shows the 

architecture of VGG16. 

 

 

 

 

 

 

 

Figure 3. VGG16 Architecture (Zhang et al., 2016) 

2.3.2 ResNet50   

ResNet or Residual Network was introduced in 2015 by He et al. (2016), and the 

algorithm has shown exceptional performance when classifying the ImageNet dataset. The 

algorithm consists of a combination of 50 layers deep of convolutional block and identity 

block, in which each block has three convolutional layers. ResNet utilizes the skip connection 

concept that allows the algorithm to learn an identity function that would enable the higher 

layer to perform well as the lower layer. Figure 4 shows the architecture of ResNet50. 
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Figure 4. ResNet50 Architecture (Peng et al., 2019) 

2.3.3 Inception V3 

Inception V3 is a convolutional neural network (CNN) architecture from the 

Inception model that consists of 48 layers (Sujatha et al., 2021). The algorithm has some 

advanced features, such as factorized convolutions, and it can lower the number of 

computational complexities because of the efficient grid size reduction (Ayan et al., 2020). 

Inception architecture uses an image model block to approximate an optimal local sparse 

structure in a CNN that allows for more effective computation. The applied dimensionality 

reduction has made the algorithm more efficient. The Inception V3 has also proven to 

significantly reduce the number of parameters and computational complexity with efficient 

grid size reduction. Figure 5 shows the architecture of Inception V3. 

 

 

 

 

 

 

 

Figure 5. Inception V3 Architecture (Szegedy et al., 2015) 

2.3.4 EfficientNet 

EffcientNet was developed based on model scaling, in which the algorithm uses 

compound scaling to rescale depth, width, and image resolution. The algorithm has seven 

versions, and all the versions utilize Inverted Residual Blocks or MBConv Block, where a 
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single convolutional filter is applied to each input channel for better efficiency (Tan & Le, 

2019; Sandler et al., 2018). In this experiment, only the first three versions of EfficientNet 

algorithms were considered: EfficientNet B0, EfficientNet B1, and EfficientNet B2. Figure 

6 shows the basic version, which is EfficientNet B0. Each version is upgraded in terms of 

increasing the number of Module 3 and different repetition patterns. According to Tan & Le 

(2019), EfficientNet algorithms have also shown good performance when classifying images 

from ImageNet. Inspired by this finding, the performance of the EfficientNet algorithm in 

classifying chili plant growth stages under uncontrolled conditions is investigated. This is to 

see how well the baseline and the advanced architectures classify complex images.  

 

Figure 6. Efficient Net B0 architecture. 

3. Results and Discussions 

The performance of the selected deep learning algorithms was evaluated based on the 

accuracy and loss, as in equation (1) and equation (2). The accuracy is the number of correctly 

identified samples during the cross-entropy loss between actual and predicted data. 

Accuracy  =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Loss  =  ∑ 𝑛𝑗log (𝑃𝑗)
𝐾

𝑗=1
  (2) 

TP, TN, FP, and FN are genuinely positive, true negative, false positive, and false negative, 

respectively. The training and validation accuracy and loss produced by the VGG16, 

ResNet50, InceptionV3, and EfficientNet algorithms are illustrated in Figure 7 until Figure 

10. 
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Figure 7. Training and validation accuracies produced by (a) VGG16, (b) ResNet50, and (c) Inception V3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Training and validation accuracies produced by (a) EfficientNetB0, (b) EfficientNetB1 and (c) 

EfficientNetB3.  

 

(a) (b) (c) 

(a) (b) 

(c) 



AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 11 of 18 

 

 

 

Figure 9. Training and validation loss produced by (a) VGG16, (b) ResNet50, and (c) Inception V3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Training and validation loss produced by (a) EfficientNet B0, (b) EfficientNet B1, and (c) 

EfficientNet B2.  

(a) (b) 

(c) 

(a) (b) (c) 
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It is shown in Figure 7 that VGG16, ResNet50, and Inception V3 algorithms have 

produced approximately similar percentages of accuracy, which range from 91% to 92%, 

where ResNet50 is shown to outperform the rest of the algorithms by achieving the highest 

accuracy. Nevertheless, in terms of stability, VGG16 is shown to outperform the rest. 

Meanwhile, in Figure 8, EfficientNet algorithms have shown lower accuracy than VGG16, 

ResNet50, and Inception V3, where the accuracy produced by EfficientNetB0, 

EfficientNetB1, and EfficientNetB2 are only 63%, 59%, and 62%, respectively. The 

validation losses produced by the VGG16, ResNet50, and InceptionV3 algorithms, as shown 

in Figure 9, are much lower than the validation losses produced by EfficientNetB0, 

EfficientNetB1, and EfficientNetB2 algorithms, as shown in Figure 10. This shows that the 

dataset used in the experiment is very complex and challenging for efficient classifiers. 

Moreover, EfficientNet algorithms need to be trained by an extensive dataset such as 

the ImageNet dataset to efficiently classify the data, as Tan (2019) discussed. The effect of 

image size on the performance of the deep learning algorithms is also studied. For this 

purpose, only VGG16, ResNet50, and Inception V3 were considered as these three 

algorithms can produce high accuracy when classifying images from the chili plant growth 

dataset. The results are shown in Table 3, and it is observed that a larger image size slightly 

influenced the performance of VGG16 and Inception V3. Nevertheless, the accuracy of 

ResNet50 is greatly affected by the size of the image, where it is shown in Table 3 that large-

sized images decrease the accuracy of classification. 

Table 3. Comparison of accuracy and loss for different image sizes. 

Algorithm 128 × 128 pixels 256 × 256 pixels 

Accuracy Loss Accuracy Loss 

VGG16 91.60% 0.2877 91.19% 0.2505 

ResNet50 92.01% 0.3162 87.91% 0.4192 

InceptionV3 91.39% 0.2828 90.57% 0.3367 

Although VGG16, ResNet50, and InceptionV3 algorithms have shown good 

performance when classifying the growth stage of chili plants from images under a runaway 

condition, the performance of these algorithms when classifying images with different 

complexity is investigated as well. The training and validation accuracy produced by each 

algorithm is illustrated in Figure 11. The results showed that VGG16, ResNet50, and 

InceptionV3 produced inadequate training and validation accuracies of less than 80% and 

30%, respectively. Moreover, the algorithms showed inconsistent stability as the number of 
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epoch increased. Hence, we can conclude that images under extreme exposure with a 

complex background consisting of multiple chili plants are too challenging for the classifiers. 

Furthermore, the total number of images used to train and validate the algorithms is 

too small. This is due to the difficulty and challenges faced by the researchers to collect the 

data during the movement control order (MCO) period in Malaysia. Even so, the complex 

chili plant images will create more opportunities for the researchers to produce a highly 

accurate algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Training and validation accuracies produced by (a) VGG16, (b) ResNet50, and (c) Inception V3. 

4. Conclusions 

The efficacy of deep learning algorithms, namely VGG16, ResNet50, Inception V3, 

EfficientNet B0, EfficientNet B1and EfficientNet B2 algorithms in classifying the growth 

stage of chili plants from a dataset that consists of 2,320 plant images in a runaway condition 

is demonstrated. The experiment results showed that VGG16, ResNet50, and Inception V3 

are far more accurate and stable than the EfficientNet algorithms. It is also found that the 

accuracy of the deep learning algorithms is greatly affected by the complexity of the images. 

Under extreme exposure, the algorithms have difficulty classifying the images correctly. The 

size of the dataset also plays a vital role in producing a highly accurate classifier. 

(a) (b) (c) 
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In conclusion, the VGG16, ResNet50, and Inception V3 algorithms have shown great 

potential for classifying the growth stage of chili plants. The performance of the algorithms 

can be further improved by exposing them to images with high complexity, such as images 

rotated at various angles, images scaled to various sizes and exposed to various lighting 

effects. This will create more opportunities for developing an advanced classifier. 

Funding: This work was funded by the Ministry of Higher Education with grant number 5540078 

(FRGS/1/2018/WAB01/UPM/02/30). 

Acknowledgments: The authors would also want to thank Mrs. Noor Azlina Abdul Aziz for her support in 

this study. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

Alhnaity, B., Pearson, S., Leontidis, G., et al. (2020). Using deep learning to predict plant growth and yield in 

greenhouse environments. Acta Horticulturae, (1296), 425–432. doi:https://doi.org/10.17660/ 

actahortic.2020.1296.55 

Anugraheni, N. A., Suhendi, A., & Bethanigtyas, H. (2019). Image processing of IoT based cherry tomato 

growth monitoring system. In 2019 6th International Conference on Instrumentation, Control, and 

Automation (ICA), 2019. pp. 207–210. doi:https://doi.org/10.1109/ICA.2019.8916680 

Ayan, E., Erbay, H., & Varçın, F. (2020). Crop pest classification with a genetic algorithm-based weighted 

ensemble of deep convolutional neural networks. Computers and Electronics in Agriculture, 179, 

105809. doi: https://doi.org/10.1016/j.compag.2020.105809 

Bahtiar, A. R., Santoso, A. J., & Juhariah, J. (2020). Deep learning detected nutrient deficiency in chili. In 2020 

8th International Conference on Information and Communication Technology (ICoICT), 2020. pp. 1–

4. doi: https://doi.org/10.1109/ICoICT49345.2020.9166224 

Bouman, C., & Shapiro, M. (1994). A multiscale random field model for Bayesian image segmentation. IEEE 

Transactions On Image Processing, 3(2), 162–177. doi:https://doi.org/10.1109/83.277898 

Chouhan, S. S., Kaul, A., & Singh, U. P. (2019). A deep learning approach for the classification of diseased 

plant leaf images. In 2019 International Conference on Communication and Electronics Systems 

(ICCES), 2019, pp. 1168–1172. doi:https://doi.org/10.1109/ICCES45898.2019.9002201 

Department of Statistics Malaysia. (2020). Department of Statistics Press Release Supply and Utilization 

Accounts Selected Agricultural Commodities, December, pp. 2013–2015. 

Ferentinos, K. (2018). Deep learning models for plant disease detection and diagnosis. Computers And 

Electronics In Agriculture, 145, 311–318. doi:https://doi.org/10.1016/j.compag.2018.01.009 

https://doi.org/10.17660/actahortic.2020.1296.55
https://doi.org/10.17660/actahortic.2020.1296.55
https://doi.org/10.1109/ICA.2019.8916680
https://doi.org/10.1016/j.compag.2020.105809
https://doi.org/10.1109/83.277898
https://doi.org/10.1109/ICCES45898.2019.9002201
https://doi.org/10.1016/j.compag.2018.01.009


AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 15 of 18 

 

Fuentes, A., Yoon, S., & Park, D. (2019). Deep learning-based phenotyping system with glocal description of 

plant anomalies and symptoms. Frontiers In Plant Science, 10. 

doi:https://doi.org/10.3389/fpls.2019.01321 

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. (2016). Deep learning for visual understanding: 

A review. Neurocomputing, 187, 27–48. doi:https://doi.org/10.1016/j.neucom.2015.09.116 

Habiba, S. U., Islam, M. K., & Ahsan, S. M. M. (2019).  Bangladeshi plant recognition using deep learning 

based leaf classification. In 2019 International Conference on Computer, Communication, Chemical, 

Materials and Electronic Engineering (IC4ME2), 2019. pp. 1–4. 

doi:https://doi.org/10.1109/IC4ME247184.2019.9036515 

Haifa Group (2021). Crop Guide: Growing Peppers. https://www.haifa-group.com/articles/crop-guide-

growing-peppers. 

Hao, X., Jia, J., Mateen Khattak, A., et al. (2020). Growing period classification of Gynura bicolor DC using 

GL-CNN. Computers And Electronics In Agriculture, 174, 105497. 

doi:https://doi.org/10.1016/j.compag.2020.105497 

He, K., Zhang, X., Ren, S., et al. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 2016. pp. 770–778. 

doi:https://doi.org/10.1109/CVPR.2016.90 

Keller, K., Kirchgeßner, N., Khanna, R., et al. (2018). Soybean leaf coverage estimation with machine learning 

and thresholding algorithms for field phenotyping. In 29th British Machine Vision Conference 

(BMVC), Newcastle upon Tyne, United Kingdom, 2018. p.32.  

Khanramaki, M., Askari Asli-Ardeh, E., & Kozegar, E. (2021). Citrus pests classification using an ensemble of 

deep learning models. Computers And Electronics In Agriculture, 186, 106192. 

doi:https://doi.org/10.1016/j.compag.2021.106192 

Kim, M., Choi, E., Baek, G., et al. (2013). Lettuce growth prediction in plant factory using image processing 

technology. IFAC Proceedings Volumes, 46(4), 156–159. doi:https://doi.org/10.3182/20130327-3-jp-

3017.00036. 

Kingma, Diederik & Ba, Jimmy. (2014). Adam: A method for stochastic optimization. In International 

Conference on Learning Representations, 2015. https://arxiv.org/abs/1412.6980. 

Learning, M., & Rai, H. (2021). Machine Learning vs Deep Learning. Data Science Stack Exchange. 

https://datascience.stackexchange.com/questions/16422/machine-learning-vs-deep-learning. 

Li, C., Adhikari, R., Yao, Y., et al. (2020). Measuring plant growth characteristics using smartphone based 

image analysis technique in controlled environment agriculture. Computers And Electronics In 

Agriculture, 168, 105123. doi:https://doi.org/10.1016/j.compag.2019.105123 

Li, X., Zeng, R., & Liao, H. (2015). Improving crop nutrient efficiency through root architecture modifications. 

Journal Of Integrative Plant Biology, 58(3), 193–202. doi:https://doi.org/10.1111/jipb.12434 

https://doi.org/10.3389/fpls.2019.01321
https://doi.org/10.1109/IC4ME247184.2019.9036515
https://www.haifa-group.com/articles/crop-guide-growing-peppers
https://www.haifa-group.com/articles/crop-guide-growing-peppers
https://doi.org/10.1016/j.compag.2020.105497
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.compag.2021.106192
https://doi.org/10.3182/20130327-3-jp-3017.00036
https://doi.org/10.3182/20130327-3-jp-3017.00036
https://datascience.stackexchange.com/questions/16422/machine-learning-vs-deep-learning
https://doi.org/10.1016/j.compag.2019.105123
https://doi.org/10.1111/jipb.12434


AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 16 of 18 

 

Mochida, K., Koda, S., Inoue, K., et al. (2018). Computer vision-based phenotyping for improvement of plant 

productivity: A machine learning perspective. Gigascience, 8(1). 

doi:https://doi.org/10.1093/gigascience/giy153 

Majlis Ilmu, Kerajaan Negara Brunei Darussalam (2018). Life Cycle of Plants. 

https://www.majlisilmu.gov.bn/Shared%20Documents/Pameran/2018/WEEK%205%20Life_Cycle.p

df 

Norfadzilah, A.  (2018). Screening of selected cucumber mosaic virus resistance chilli genotypes obtained 

from world vegetable center for high yield in Malaysian condition. In Transactions of the Malaysian 

Society of Plant Physiology, 25. 

Namin, S.T., Esmaeilzadeh, M., Najafi, M., et al. (2018). Deep phenotyping: deep learning for temporal 

phenotype/genotype classification. Plant Methods, 14(1). doi:https://10.1186/s13007-018-0333-4 

Othman, A. A. & Tizhoosh, H. R (2010). Image thresholding using neural network. In 2010 10th International 

Conference on Intelligent Systems Design and Applications, 2010. pp. 1159–1164. 

doi:https://doi.org/10.1109/ISDA.2010.5687030  

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions On Systems, 

Man, And Cybernetics, 9(1), 62–66. doi:https://doi.org/10.1109/tsmc.1979.4310076 

Peng, J., Kang, S., Ning, Z., et al. (2019). Residual convolutional neural network for predicting response of 

transarterial chemoembolization in hepatocellular carcinoma from CT imaging. European Radiology, 

30(1), 413–424. doi:https://doi.org/10.1007/s00330-019-06318-1 

Rangarajan, A.K., & Purushothaman, R. (2020). Disease classification in eggplant using pre-trained VGG16 

and MSVM. Scientific Reports, 10(1). doi:https://doi.org/10.1038/s41598-020-59108-x 

Sakurai, S., Uchiyama, H., Shimada, A., et al.(2019). Plant growth prediction using convolutional LSTM. In 

VISIGRAPP 2019 - Proceedings of the 14th International Joint Conference on Computer Vision, 

Imaging and Computer Graphics Theory and Applications, Vol. 5. SciTePress. 

Sandler, M., Howard, A., Zhu, M., et al. (2018). MobileNetV2: inverted residuals and linear bottlenecks. In 

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. pp. 4510–4520. 

doi:https://doi.org/10.1109/CVPR.2018.00474 

Sharma, R. & Kumar, R. (2017). Growth, flowering and yield of chilli, Capsicum annuum L. as influenced by 

spacing and growing conditions. International Journal Of Pure & Applied Bioscience, 5(5), 524–527. 

doi:https://doi.org/10.18782/2320-7051.5858 

Simonyan, K., & Zisserman, A. (2021). Very Deep Convolutional Networks for Large-Scale Image Recognition. 

https://arxiv.org/abs/1409.1556v4. 

Soethe, C., Steffens, C., Mattos, L., et al. (2016). Postharvest quality and functional compounds in "dedo-de-

moça" 'BRS Mari' pepper fruit at different stages of maturity. Ciência Rural, 46(8), 1322–1328. doi: 

https://doi.org/10.1590/0103-8478cr20141795 

https://doi.org/10.1093/gigascience/giy153
https://www.majlisilmu.gov.bn/Shared%20Documents/Pameran/2018/WEEK%205%20Life_Cycle.pdf
https://www.majlisilmu.gov.bn/Shared%20Documents/Pameran/2018/WEEK%205%20Life_Cycle.pdf
https://doi.org/10.1109/ISDA.2010.5687030
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1007/s00330-019-06318-1
https://doi.org/10.1038/s41598-020-59108-x
https://doi.org/10.1109/CVPR.2018.00474
https://arxiv.org/abs/1409.1556v4


AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 17 of 18 

 

Spalding, E., & Miller, N. (2013). Image analysis is driving a renaissance in growth measurement. Current 

Opinion In Plant Biology, 16(1), 100–104. doi:https://doi.org/10.1016/j.pbi.2013.01.001 

Subetha, T., Khilar, R., & Subaja Christo, M. (2021). A comparative analysis on plant pathology classification 

using deep learning architecture – Resnet and VGG19. Materials Today: Proceedings. 

doi:https://doi.org/10.1016/j.matpr.2020.11.993 

Sudianto, Herdiyeni, Y., Haristu, A., & Hardhienata, M. (2020). Chilli quality classification using deep learning. 

In 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), 

2020. pp. 1–5. doi: https://doi.org/10.1109/icosica49951.2020.9243176 

Suhaimi, M.Y., Arshad, A.M., Hani, M., et al. (2016). Potential and viability of chilli cultivation using 

fertigation technology in Malaysia. International Journal of Innovation and Applied Studies, 17, 1114–

1119. 

Sujatha, R., Chatterjee, J., Jhanjhi, N., et al. (2021). Performance of deep learning vs machine learning in plant 

leaf disease detection. Microprocessors And Microsystems, 80, 103615. 

doi:https://doi.org/10.1016/j.micpro.2020.103615 

Suroso, I., Soelistiadji, K., & Pitoyo, J. (2016). Development of chilli growth control system using artificial 

neural network. IFAC Proceedings Volumes, 34(11), 234–237. doi:https://doi.org/10.1016/s1474-

6670(17)34139-3 

Szegedy, C., Liu, W., Jia, Y., et al. (2015). Going deeper with convolutions. In 2015 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2015. pp. 1–9. 

doi:https://doi.org/10.1109/CVPR.2015.7298594. 

Tan, M. (2019). EfficientNet: Improving accuracy and efficiency through AutoML and model scaling. Google 

AI Blog. https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html. 

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv.org. 

https://arxiv.org/abs/1905.11946v5. 

Van Dijk, A., Kootstra, G., Kruijer, W., et al. (2021). Machine learning in plant science and plant breeding. 

Iscience, 24(1), 101890. doi:https://doi.org/10.1016/j.isci.2020.101890 

Wang, X., Xuan, H., Evers, B., et al. (2019). High-throughput phenotyping with deep learning gives insight 

into the genetic architecture of flowering time in wheat. GigaScience, 8(11). 

doi:https://doi.org/10.1093/gigascience/giz120 

Wayne. (2021). Malaysia Hydroponics Suregrow powder fertiliser (10L/50L/100L) for chilli (Special Mixture). 

https://malaysiahydroponics.com/malaysia-hydroponics-powder-chilli.html 

Yasrab, R., Zhang, J., Smyth, P., et al. (2021). Predicting plant growth from time-series data using deep 

learning. Remote Sensing, 13(3), 331. doi:https://doi.org/10.3390/rs13030331 

https://doi.org/10.1016/j.pbi.2013.01.001
https://doi.org/10.1016/j.matpr.2020.11.993
https://doi.org/10.1016/j.micpro.2020.103615
https://doi.org/10.1109/CVPR.2015.7298594
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://arxiv.org/abs/1905.11946v5
https://doi.org/10.1016/j.isci.2020.101890
https://doi.org/10.1093/gigascience/giz120
https://malaysiahydroponics.com/malaysia-hydroponics-powder-chilli.html
https://doi.org/10.3390/rs13030331


AAFRJ 2021, 2, 2: a0000238; https://doi.org/10.36877/aafrj.a0000238 18 of 18 

 

Yusuf, N., Mohd Fazi, S., Ali, N., et al. (2016). Effects of Colletotrichum capsici infection on the growth and 

antioxidative response on defense mechanisms of Capsicum annuum. Malaysian Journal of 

Microbiology, 12(6), 455–462. 

Yu, Z., Wong, H., & Wen, G. (2011). A modified support vector machine and its application to image 

segmentation. Image and Vision Computing, 29(1), 29–40. 

doi:https://doi.org/10.1016/j.imavis.2010.08.003 

Zhang, X., Zou, J., He, K., et al. (2016). Accelerating very deep convolutional networks for classification and 

detection. IEEE Transactions on Pattern Analysis And Machine Intelligence, 38(10), 1943–1955. 

doi:https://doi.org/10.1109/tpami.2015.2502579 

 

 

 

Copyright © 2021 by Rozilan, D. M. M., et al. and HH Publisher. This work is licensed under the Creative 

Commons Attribution-NonCommercial 4.0 International Lisence (CC-BY-NC4.0) 

 

https://doi.org/10.1109/tpami.2015.2502579

