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Abstract: The current soil nutrient estimation method is laborious, repetitive, time-

consuming and costly, making it less efficient for large-scale soil fertility assessment in 

precision agriculture practice. This paper discussed the feasibility of visible and near-infrared 

(Vis-NIR) spectroscopy as an alternative method for rapid measurement of total nitrogen in 

the soil, which is more efficient for a huge paddy field area. For this purpose, Vis-NIR 

reflectance spectra (350 – 1750 nm) were acquired on 200 soil samples using spectrometers. 

Partial Least Squares Regression (PLSR) with full (leave-one-out) cross-validation was used 

to develop the calibration model between the Vis-NIR soil spectra and the total nitrogen 

obtained by chemical analysis in laboratory. The coefficient of determination (R2
val) and 

residual prediction deviation (RPD) of the developed calibration model for total nitrogen 

(Ntot) was 0.78 and 1.86, respectively. The predicted total nitrogen map generated based on 

the Vis-NIR spectroscopy was comparable with the laboratory analysis’s measured map. This 

result indicates that the Vis-NIR infrared spectroscopy is the potential to be used for total 

nitrogen estimation in soil. 
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1. Introduction 

The normal practice of uniform blanket fertiliser application, without any indication 

of the current level of soil nutrients, results in excessive fertiliser application in high nutrient 
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areas and less fertiliser application in low nutrient field zones (Thafna et al., 2017; Whetton 

et al., 2017). This uniform fertiliser management under spatially variable conditions can 

cause crop nutrient deficiencies as well as increases the  input cost due to over fertiliser 

application. This results in less than optimum yields and also potentially reduces 

environmental quality. The advancement of precision agriculture technology has led to the 

adoption of variable rate fertiliser application as an improved technique to replace the 

uniformly blanket fertiliser application. In this technique, high resolution or high-density soil 

nutrients information is required apart from normalised difference vegetation index (NDVI) 

and leaf area index (LAI) to determine the fertiliser rate that needs to be applied at a specific 

location (Lowenberg-DeBoer & Aghib, 1999; Maleki et al., 2008; Mouazen et al., 2009; 

Halcro et al., 2013; Mouazen & Kuang, 2016). In Malaysia, fertiliser recommendations by 

the soil service providers to the farmers are based on only four samples  per hectare. The 

conventional method of soil nutrient estimation is unable to collect the huge number of soil 

samples which then requires extensive, expensive and time-consuming laboratory analysis 

by an expert operator (Morellos et al., 2016). Therefore, an alternative method of soil nutrient 

assessment is needed to obtain high-density information on the soil nutrient availability for 

variable rate fertiliser application. This method, even if it is not as precise as the conventional 

method, is more cost effective, rapid and easy to use. 

Proximal soil sensing has been reported as a promising technique for high-resolution 

soil nutrient estimation and mapping (Viscarra Rosel et al., 2010; Kuang et al., 2012). 

Electrical conductivity/resistivity (Corwin & Lesch, 2003), ground-penetrating radar (Lunt 

et al., 2005), and the γ-ray sensor (Triantafilis et al., 2013) are some of the proximal sensing 

techniques that have been explored. An extensive review by Kuang et al. (2012) had 

concluded that the most promising proximal sensing technologies for quantifying soil 

properties were electrochemical techniques and optical visible and near infrared (Vis-NIR) 

spectroscopy. The latter technique, however, has gained the most interest because it has more 

advantages than others. Wijewardane et al. (2020) listed out the advantages of Vis-NIR 

which include its feasibility for in-situ soil sensing and the non-contact nature of interactions 

between Vis-NIR electromagnetic energy and soils, ease of miniaturization using optical 

fibres for a Vis-NIR sensing probe, and the ability to infer multiple soil properties from a 

single Vis-NIR scan. 

In Malaysia, the use of Vis-NIR spectroscopy as an alternative technique for rapid 

and cost effective assessment of soil nutrients has not been reported extensively. Hence, this 

paper described the potential of Vis-NIR spectroscopy for the estimation of total nitrogen 

(Ntot) in paddy soil. The output from this study will be used for the development of real-time 

soil nutrient assessment. 
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2. Materials and Methods 

2.1 Experimental Site and Soil Sampling 

The field experiment was conducted at Rice Research and Innovation Excellence 

Centre (rice@MARDI) paddy field in Seberang Prai city of Penang, Malaysia (5°32'37"N 

100°28'3"E). This site comprises of 10 experimental paddy field blocks with about 10 to 15 

number of small paddy plots at each block. Soil samples were collected after the paddy 

harvesting season in October 2019. Five soil samples were collected at each randomly 

selected 40 paddy plots in block 1 to block 10. At each sampling location, the position 

coordinates were recorded using Nomad® 900 series (Trimble®, USA) integrated Global 

Positioning System (GPS) receiver. The collected 200 bulk soil samples were packed in air-

tight plastic bags to avoid the loss of soil moisture, labelled, and immediately sent to the 

farmhouse near the paddy field for spectra acquisition.  

 

2.2 Vis-NIR Soil Spectra Acquisition 

Two standalone fibre type spectrometers (AvaSpec-ULS2048 and AvaSpec-NIR256, 

AVANTES, Netherlands) were used to obtain the Vis-NIR spectrum of the soil samples. A 

halogen lamp was connected to the light illumination fibre, while the detector fibres were 

connected to two spectrometers. The first spectrometer was a 2048-pixel CCD detector for 

visible and low near-infrared range (350 – 1100 nm), while the second spectrometer was a 

256-pixel Indium Gallium Arsenide (InGaAs) NIR wavelength detector (900 – 1750 nm). A 

Vis-NIR spectrum of 350 – 1750 nm wavelengths was formed by merging both Vis and NIR 

spectra. Both spectrometers were connected to a laptop installed with AvaSoft 8.5 software 

for data logging. Figure 1 exhibits the setup for the soil spectra acquisition using the 

spectrometers. 

 

Figure 1. Experimental setup for soil spectra acquisition using the AVANTES spectrometers. 
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White reference spectra were acquired using the standard reflector (Avantes WS-2 

reference tile) prior to the acquisition of spectra on the soil samples, while dark reference 

spectra were obtained by turning off the light source. The spectra acquisition was 

intentionally performed on the fresh soil samples without removing the moisture through 

oven drying, crush and sieve so that the developed calibration model is more susceptible to 

the real soil condition which contains moisture and non-uniform texture as claimed by 

Kodaira and Shibusawa (2013). This is important towards the real-time or in-situ soil nitrogen 

estimation. Thus, only debris such as plant roots and stone were removed from each soil 

sample. Small amount of soil sample (about 20 g) was placed in a plastic Petri dish of 7.5 

mm depth and 30 mm diameter. The soil surface was pressed, carefully levelled and 

compacted in the dish in order to get the maximum amount of reflected light. A black probe 

holder was used to hold the optical probe and the soil sample in the petri dish was placed 

underneath the probe holder. This was to ensure that the acquired spectra were not affected 

by the ambient light and to standardise the surface to probe distance. The petri dish was 

rotated at an angle 120º, and reflectance readings were acquired from each soil specimen of 

every rotation. At each rotation, 10 successive spectra were measured over 5 s and averaged 

in one spectrum for each position. The three acquired spectra at three different rotations were 

further averaged as a single spectrum to represent the spectrum of each soil samples. This 

spectra acquisition process was carried out over 200 collected soil samples. Therefore, there 

were 200 soil spectra that corresponded  to 200 soil samples. These spectra were then used 

for spectral processing and model development. 

After the spectra acquisition has been carried out for all the 200 samples, these 

samples were then sent to ESPEK Research and Advisory Services Laboratory (ERAS) for 

analysis of Ntot using the combustion method. 

 

2.3. Spectra Pre-Processing and Calibration Model Development 

The spectra pre-processing and model development were performed using 

Unscramblers software (Version X10.2, Camo A/S, Oslo, Norway). All collected 200 soil 

reflectance spectra were converted to absorbance by applying the Beer-Lambert's law 

(Williams & Norris, 2001) as in Equation 1; 

 

A = log10(Rw – Rd) – log10(R – Rdark) (1) 

 

Rw is white reflectance spectra using the standard reflector, Rd is dark reflectance 

spectra when the light source was turned off, whereas R denotes the reflectance spectra of 

the soil samples. In order to obtain all data at approximately the same scale, the maximum 

normalization technique was applied to the average absorbance spectrum. The second 
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derivative Savitzky and Golay pre-treatment method was further applied to the absorbance 

spectra to enhance weak signal and reduce the diffusive reflectance noise.  

The Ntot calibration model was developed using the partial least-square regression 

(PLSR) technique validated using full cross-validation to establish the correlation between 

the values of Ntot from the laboratory-chemical analysis (reference values) and the pre-

processed Vis-NIR soil absorption spectra of each respective locations. The coefficient of 

determination (R2
val) and residual prediction deviation (RPD) produced from the PLSR 

analysis of the developed model was used to evaluate the accuracy of the model. RPD is a 

ratio of the standard deviation (SD) of the reference dataset to the full cross-validation root 

mean square error (RMSEval), as in Equation (1) (Chang et al., 2001; Cozzolino et al., 2005; 

Mouazen et al., 2006) was calculated from the validation dataset using Equation 2 (Brereton, 

2003)  

RPD =  
SD(ym) 

(2) 
RMSEval 

 

2.4. Validation and Map Comparison 

The developed calibration model was validated on 72 Vis-NIR soil spectra that were 

acquired at plot 12 in block 5 in the following season (February 2020). Seventy-two soil 

samples were also collected at the same location and sent to the same laboratory for analysis 

of Ntot. The model was applied to the collected validation spectra to obtain the predicted Ntot. 

Two maps of plot 12 from block 5 were then generated using the ARCVIEW GIS 

10.6 software. The first map was the measured map which was generated based on the 

amount of Ntot obtained from the laboratory analysis while the second map was a prediction 

map generated based on Ntot prediction values computed by Vis-NIR calibration model. 

Inverse distance weighing (IDW) method was applied to interpolate both maps. 

3. Results 

The Ntot statistics of the calibration and validation (prediction) sets for a total of 200 

soil sample are listed in Table 1 while the PLSR analysis result of the calibration model is 

shown in Table 2. The acquired raw and pre-treated absorbance Vis-NIR spectra are  

depicted in Figure 2. Both ends of the Vis-NIR absorbance spectra were deleted as these 

spectra regions were unstable and high in noise. The calibration model was then developed 

on the final 200 spectra with wavelength range from 480 to 1600 nm at 5 nm interval. 

Moreover, a total of 20 samples outliers (10 % of the dataset) were detected and removed 

from the model dataset. The scatter plot of the model for Ntot is depicted in Figure 3. The 

primary regression equation for Ntot is also shown. The measured and predicted digital map 

of Ntot for validation plot 12 in block 5 is illustrated in Figure 4.  
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Table 1. Statistical results of soil chemical analysis on Ntot in calibration dataset from 200 soil samples. 

Statistic Value 

Min 0.02 

Max 0.30 

Mean 0.14 

Range 0.28 

Std Dev 0.04 

 

 

(a) 

 

 

(b) 

Figure 2. The merged of 200 Vis-NIR spectra for developing the calibration model. (a) original absorbance 

spectra and (b) pre-treated spectra. 
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Table 2. PLSR result for calibration model of Ntot. 

 R R2 RMSE 

calibration 0.89 0.80 0.014 

validation 0.88 0.78 0.021 

 

 

 

Figure 3. Scatter plot of measured values versus Vis–NIR predicted values using  PLSR coupled with full 

cross-validation datasets for Ntot. 

 

 

 

Figure 4. Comparison of (a) measured and (b) predicted map of Ntot for validation plot 12 in block 5. 

4. Discussion 

The accuracy of the calibration was evaluated based on the (R2
val) in cross-validation, 

and the RPD. Rval
2 indicates that the percentage of the variance in the Y variable is accounted 

for by the X variable. Williams (2003) suggested that an R2
val of between 0.50 and 0.65 means 

that more than 50% of the variation in Y is accounted for by variable X, so that high and low 

levels can be discriminated. An R2
val shows estimated quantitative predictions between 0.66 

(a) (b) 
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and 0.81, while an R2
val shows a strong prediction between 0.82 and 0.90. The calibration 

model is considered to be outstanding with an R2
val above 0.91 (William, 2003). Based on 

this classification, the R2
val of 0.78 obtained in this study indicated that the developed model 

can be used for quantitative prediction of Ntot. 

According to Chang et al. (2001), the RPD value is considered excellent when it is 

above 2.0, nearly good between 1.4 and 2.0 and unreliable the value falls below 1.4. It was 

found from this classification that the performance of the developed model for predicting Ntot 

is good (RPD = 1.86). The comparative maps between the measured and predicted maps 

shown in Figure 3 indicated that a partial similarity distribution of Ntot in most parts of plot 

12 in block 5. The measurement ranges obtained using the two techniques were very similar. 

This indicated that the spatial distribution of Ntot based on the Vis-NIR spectroscopy along 

with their location coordinates is reliable and can be used to generate a digital soil nitrogen 

map so that the nitrogen distribution in the soil can be seen visually. The digital map can then 

be used to assist farmers or agronomist in making decision for site-specific variable-rate 

fertiliser application. In addition, the estimated nitrogen values combined with the paddy 

plant nitrogen content can also be used as an input for the on-the-go variable rate fertiliser 

applicator. 

The reliability and robustness of the calibration models should be improved, which 

will then increase the quality of the maps generated in the future. One of the suggestions in 

further studies is to provide more soil samples in other regions of Malaysia from different 

types of cultivation fields in order to have greater diversity in soil properties. It is also 

important to evaluate  the independent validation set model to examine whether it would be 

robust or restricted to the conditions under which the calibration samples were collected. It 

is also appropriate to take into account a wider spectral range, potentially up to 2500 nm, as 

perhaps more substantial absorption characteristics are available for Ntot between 1700 and 

2500 nm. However, due to the higher pricing required for higher wavelength spectrometers, 

the efficiency of using a wider range of NIR must be weighed as the higher range of spectra 

wavelength is costly. Although the predicted Vis-NIR map did not fit the corresponding 

observed map perfectly, the identical distribution pattern that existed between the two maps 

is sufficient to declare that Vis-NIR spectroscopy is a promising technique for estimating and 

mapping total nitrogen in paddy soil.  

5. Conclusions 

A spectroscopic calibration model for Ntot was developed based on Vis-NIR soil 

reflectance spectra acquired by commercial spectrometers on soil samples collected from 10 

blocks of paddy plots. The performance of the developed model was found to be good for the 

quantitative prediction of Ntot. The comparable maps generated based on the spectroscopic 

technique's prediction indicated that this technique and their location coordinates recorded 

by GPS can be used for estimation and digital mapping of Ntot distribution in paddy soil.  
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