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Abstract: The bagworm species of Metisa plana, is one of the major species of leaf-eating 

insect pest that attack oil palm in Peninsular Malaysia. Without any treatment, this situation 

may cause 43% yield loss from a moderate attack. In 2020, the economic loss due to the 

bagworm attack was recorded at around RM 180 million. Based on this scenario, it is 

necessary to closely monitor the bagworm outbreak at the infested areas. Accuracy and 

precise data collection is debatable, due to human errors such as miscounting, cheating and 

creating data. The objective of this technology is to design and develop a specific machine 

vision that incorporates image processing algorithm according to its functional modes. The 

device, Automated Bagworm Counter or Oto-BaCTM is the first in the world to be developed. 

The software functions based on a graphic processing unit computation and used 

TensorFlow/Teano library set up for the trained dataset. The technology is based on the 

developed deep learning with Faster Regions with Convolutional Neural Networks technique 

towards real time object detection. The Oto-BaCTM uses an ordinary camera. By using self-

developed Deep Learning algorithms, a motion-tracking and false color analysis are applied 

to detect and count number of living and dead larvae and pupae population per frond, 

respectively, corresponding to three major groups or sizes classification. Initially, in the first 

trial, the Oto-BaCTM has resulted in low percentages of detection accuracy for the living and 

dead G1 larvae (47.0% & 71.7%), G2 larvae (39.1 & 50.0%) and G3 pupae (30.1% & 20.9%). 

After some improvements on training dataset, the percentages increased in the next field trial, 

amount of 40.5% and 7.0% for the living and dead G1 larvae, 40.1% and 29.2% for the living 

and dead G2 larvae and 47.7% and 54.6% for the living and dead pupae. Furthermore, the 

development of the ground-based device is the pioneer in the oil palm industry, in which it 

reduces human error when conducting census while promoting precision agriculture practice.  
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1. Introduction 

Bagworm is one of the main and serious leaf eating insect pest of oil palm plantation 

in Malaysia. The bagworm outbreaks in oil palm plantations were documented by Wood 

(1968) and Basri et al. (1988) whereby there are three major species of bagworms reported, 

namely Metisa plana Walker, Pteroma pendula Joannis and Mahasena corbetti Tams. In 

Standard Operating Procedure (SOP) for bagworm control (Malaysian Palm Oil Board, 2016; 

Najib et al., 2020), it is mentioned that the bagworm is gazetted as a dangerous pest (Federal 

Government Gazette, 15 November 2013, P.U. (B) 468) under the Plant Quarantine Act 1976 

(Act 167, Section 2). It is an offence if the bagworm outbreak not controlled by the plantation 

owner which leads to a penalty under the Plant Quarantine Act 1976. Integrated pest 

management (IPM) is recommended for combating bagworm outbreaks in oil palm 

plantations. According to the outlined SOP, control actions should be taken when 90% of the 

bagworm population are recorded in the early larval instars and exceeds the economic 

threshold level. The limit for M. plana and P. pendula is fixed at 10 larvae per frond. 

In order to control bagworm infestation in oil palm plantation effectively, it is vital to 

conduct a census. Census is a method to calculate number of insect pest unswervingly to 

allow effective control measures planned and implemented. Currently, census is done 

manually through naked eyes observation and counting method. Realizing the need for a 

better census operation and result, the objective of this paper is to present the design and 

development an automated counting device. First to be developed in the world is the device 

referred as Automated Bagworm Counter or in the short trademark name, Oto-BaCTM. It is 

embedded with software that is based on GPU computation and used TensorFlow/Teano 

library set up for the trained dataset. The Oto-BaCTM uses an ordinary camera and self-

developed DL algorithms, consisting of motion-tracking and false color analysis to detect 

living and dead larvae and pupae of M. plana and to count number of living and dead larvae 

and pupae population per frond, respectively, corresponding to three major groups or sizes 

classification (Najib et al., 2020). 

This paper was written to elaborate on the performance of Oto-BaCTM to detect and 

count the larval and pupal stage of M. plana. This validation work has been carried out in the 

field, with real time acquisition and measurement in actual surroundings of an oil palm. 
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2. Materials and Methods 

The process flow for the development of Oto-BaCTM is illustrated as below in Figure 

1. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Figure 1. Overall flow of the development of Oto-BaCTM 

2.1 First Step 

There were two methods being applied in the first step or image processing approach 

as follows: The first method involved development of image segmentation algorithm to 

localize/detect region of interest (RoI) in dataset based on color processing and to trace object 

(bagworms) and also to remove unnecessary background in the dataset. Then, it was 

continued with morphological operator method, which focused on extracting the object or 

bagworms corresponding to shape pattern, plus removing non-targeted regions in the dataset. 

Lastly, classification that applies supervised classifying algorithm based on trained data, 

specific to size and shape recognition-based and also to identify live and dead bagworms plus 

stages of the bagworms. The second method in this study focused on the detection of 

bagworms which employed a supervised classifying algorithm. This algorithm was based on 

trained data that include specific size and shape recognition to distinguish between stages of 

bagworm. Experiments were conducted on three groups of M. plana Walker, which were 

classified according to their stages (Figure 2). The first group contains the early larval stage, 

G1 which was the 1-3 stage. The second group was made up of the late larval stage, G2 of 

the 4-7 stage. The third group was the pupal stage (positioned at the bottom part of the oil 

palm fronds), G3. In this step, an algorithm was developed to detect bagworms and classify 

them into groups according to the stages. This was achieved by training the dataset from the 

images for object detection and recognition. A deep learning technique with Faster Regions 

with Convolutional Neural Networks (Faster R-CNN) coupled with a Region Proposal 

Network (RPN) (Ren et al., 2015) was used to predict the object bounds and object scores at 

each position. The software functions based on GPU computation and uses the 

TensorFlow/Teano library set up for trained datas 
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Figure 2. The bagworm, Metisa plana life cycle 

The experiment was conducted in controlled condition and fixed camera distance to 

ensure good results and accurate detection of the bagworm features. The controlled 

conditions were planned and set as follows; a) fully close condition, b) half open condition 

and c) fully open condition (Figure 3). Meanwhile, the position of the camera from the 

targeted objects was set at 30 cm and 50 cm distance. This set up was planned and tested 

during experiment to consider changes in light condition, shadow, vibration and sudden 

object captured during recording such as other insect and hands. 

 

 
Figure 3. Controlled condition during snapshot a) fully close, b) half open and c) fully open condition 

2.2 Second Step 

The second step involve methods to distinguish between the living, dead larvae and 

pupae.  

2.2.1 Motion tracking for determination of the living and dead larvae 

Motion analysis was used to detect dead and living larvae. It detects any movement 

of the larvae by subtracting the moving foreground from the static background. The following 

flowchart describes the motion analysis algorithm process (Figure 4). 
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Figure 4. A flowchart describing the motion analysis algorithm 

2.2.2 False color for determination of the living and dead pupae 

Sixty samples of dead and living pupae were randomly placed on a black ground 

canvas. Two light sources were identified to be economical and practical, namely the 940 nm 

(IR) and 630 nm (red). These two wavelength points were selected based on the spectral 

reflectance properties of the living and dead pupae, which were significantly different 

between the 630 nm and the 940 nm (Najib et al., 2020). The data was achieved using a 

spectroradiometer in other experiments to find the reflectance percentage at specific 

wavelengths for the pupae. The images for 630 nm and 940 nm were then captured in the 

RGB format. The images were converted to grayscale form before an average of all the values 

of the pixels were picked within a boundary of the pupa. The average pixel values were 

collected for all samples. 

The steps for pixel counting are explained as follows (Figure 5). 

Process previous frame to be the 
static background image using    
BackgroundSubtractorMOG2.

Current frame is applied to the 
GaussianBlurr to filter the noise and 

becomes the foreground image.

The background image is 
masked with the foreground 

image.

Apply the cv2.countNonZero of the 
overlapping background image with the 

foreground image.

If there is a nonzero counter, 
it means that there was 
movement in the frame.
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Figure 5. Pixel counting steps in false colour analysis. 

2.3 Third Step 

The third step involves fabrication of the prototype, Oto-BaCTM, with several steps as 

follows; 

2.3.1 Mechanical design 

Mechanical design of the prototype was carried out using 3D CAD software, Inventor 

(Autodesk Inc., USA) to produce the enclosure nomenclature. The assembly was planned 

and set before the fabrication step, which was conducted by using Computer Numerical 

Control (CNC) machine, model HT710 (Hans Laser, China). 

2.3.2 Device enclosure 

The 3D Device enclosure was drawn in the 3D CAD software is shown in Figure 6. 

The design focuses on the comfort of the user and convenience of handling. The position of 

the LCD screen is tilted 15˚ to give a better view of the screen to the user without the need 

to tilt their heads down. 

Source is captured in RGB

Location of each pupa is marked to calculate the slope 
value under the red vision (630nm) as compared to the IR 
(940nm) of the pupa at the same location.

Image is viewed in grayscale using OpenCV imshow(img, 
imgfile, grayscale_option)

The view of each pupa is zoomed until the pixel value was 
displayed.

All the pixels from a pupa image are picked and finally, 
the pixel values are averaged.  
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Figure 6. 3D design of the enclosure a) Isometric view b) Left view c) Right view d) Top View e) Front view 

f) Bottom view 

2.3.3 Computing unit 

The main processing unit from Dell Inspiron 7567 was explored and tested to search 

whether it fits all the sets of criteria. The specifications in the processing unit are shown in 

Table 1. Although the graphic module GeForce GTX 1050Ti has the 768 CUDA core which 

may be moderate in terms of specifications, it was able to handle the processing speed 

requirements. 

2.3.4 Operating system (OS) and graphical user interface (GUI) 

The fabricated device was installed with Ubuntu 16.04 64-bit Desktop mode. It is a 

Linux based operating system to run the Graphical User Interface (GUI) that became the 

primary medium of interaction between the user and the device. A graphical user interface 

(GUI) was developed using PyQT5 and Python 3.3. Since this GUI will call another Python 

file that will execute the AI detection algorithm of bagworm, the location of all files must be 

in the same location. 
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Table 1. Specification of processing unit by Dell Inspiron 

Specifications 
Hardware details 

Dell Inspiron 15 7567 

GPU 
NVIDIA GeForce GTX 1050Ti 4GB GDDRS 768 CUDA 

cores 1290MHz 

CPU 7th Gen. Intel Core i7-7700HQ Quad Core 

Memory 16GB 2400MHz DDR4 SDRAM 

Storage 128GB PCle Gen3 SSD 

Operational system Ubuntu Linux x64 16.04 

TensorFlow Builder Test (13 test) TensorFlow-GPU (0.039s) 

2.4 Fourth Step 

The fourth step was conducted to validate performance of Oto-BaCTM in the real field 

environment.  

2.4.1 Set up of field trial 

The first field trial was conducted at Slim River, Perak on 17 June 2019 and 8 July 

2019. The total infested area is approximately 1000 ha. The second field trial was carried out 

on 8 August 2019 at smallholder areas in Tapah, Perak, with a total infested area of 40 ha. 

The field trial was done by cutting down 10 oil palm fronds. The fronds with inclination of 

45° or the upper fronds with sign of attack were cut for census (Malaysian Palm Oil Board, 

2016). The field consists of mature oil palm with average age between 15 to 18 years. The 

experiment was replicated three times for each treatment in both fields and a plot size of 8 m 

× 8 m was used to collect the response data. One frond was separated into three main parts; 

top, middle and bottom. Before starting the test, a field of view (FoV) of the device per 

snapshot onto the frond was measured. Number of snapshots per frond was counted to cover 

up one whole frond census.  It has the size of about 60 cm x 35 cm. During the snapshot, 

time duration was recorded for both techniques of Oto-BaCTM (Figure 7) and manual census. 

However, the time duration was also affected by density of bagworm population per FoV slot 

(automated counting) or area of interest (AoI) (manual counting).  

 
Figure 7. An automated bagworm counter or Oto-BaCTM used during field trial 
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3. Results 

The summary results of the Deep Learning (DL) approach with Faster R-CNN is 

illustrated in Table 2. 

Table 2. DL performance to detect bagworms at different camera distances and frond areas 

Camera 

distance 

Condition Algorithm 

detection 

Human 

detection 

% detection 

30cm 

30cm 

30cm 

Open 9 10 90 a 

Closed 10 10 100 b 

Half open 9 10 90 a 

50cm 

50cm 

50cm 

Open 8 10 80 a 

Closed 9 10 90 b 

Half open 8 10 80 a 

Note: Rows with different letters were significantly different (P<0.05) after one-way ANOVA using the LSD 

test. Number of bagworms detected was depended on randomized leafspots, and the experiment was repeated 

three times for every condition. 

From Table 2, it was proven that the DL with Faster R-CNN gave better results. There 

was a significant difference in terms of detection accuracy between the 30 and 50 cm camera 

distances, where p<0.05 for the closed condition, as compared to other conditions. It 

generated the highest detection accuracy, recorded at 100% and 90%, respectively (Figure 

8). Whereas, there was a slightly lower detection at 30 cm and 50 cm camera distances for 

open and half open conditions, resulting in 90% and 80% detection. The wrong detection was 

observed, 10% and 20%, due to insufficiently strong trained data. 

Based on Figure 8, the different image processing approaches gave different levels of 

detection accuracy and it was proven by the one-way ANOVA analysis with the Least 

Significant Difference (LSD) test at P<0.05. By using the colour processing technique, it was 

revealed that the percentage of the detection accuracy was low. The highest detection 

accuracy for the colour processing technique was recorded at 55% detection accuracy at 30 

cm camera distance.  

Meanwhile, by applying DL, the percentage of detection accuracy increased up to 

100% at the 30 cm camera distance. From both stages techniques, it was revealed that the 30 

cm camera distance resulted in better detection performance and showed more accurate 

feature details of the bagworms. 
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Figure 8. Detection accuracy based on different image analysis techniques at different camera distances. Note: 

Bars across a group with the different letters were significantly different (P<0.05) after the LSD test. 

From the results of the false colour analysis, distinct differences in the pixel counts 

based on the slopes were observed for the dead and live pupae at 630 nm and 940 nm, 

following the spectral reflectance properties’ trend, with the slopes recorded at 0.37 and 0.26, 

respectively. A positive result to distinguish between the living and dead pupae was achieved 

by using the image processing approach. This result was following the trend of the spectral 

reflectance data with slightly different slope values as shown in Table 3. The slope was 

calculated based on straight lines generated by the living and dead pupae in Figure 9. It is 

recommended that live samples are collected and the image will be instantly captured in the 

field. 

 

Table 3. Measured slopes on reflectance of living and dead specimens using 630 nm and 940 nm wavelengths. 

Descriptive 

statistics 

Spectral reflectance False colour imaging 

Live Dead Live Dead 

Mean 0.26 0.38 0.26 0.37 

Min 0.26 0.38 0.14 0.30 

Max 0.27 0.38 0.29 0.50 

 

 

 

 

          Colour processing                    Deep learning 
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Figure 9. Observation of pixel value of grayscale image using See3Cam_CU135 camera using two different 

light sources at 630 nm and 940 nm to determine slopes of the living and dead pupae 

From Figure 9, a significantly different slope value was indicated between the living and 

dead pupae. This result is supported by the means separation by Students t-Test at p<0.05. 

In this study, the main focus to be highlighted is the validation of effectiveness and 

detection accuracy by Oto-BaCTM. This was clarified through a series of field trials at two 

different oil palm plantations, which were attacked by the M. plana bagworms. Based on the 

results in Figure 10, it was revealed that the average percent of detection and classification 

accuracy for the larval G1 and G2 in trial 1, recorded around 48.6% and 41.9%, and 34.9%, 

respectively. The results showed that the detection and classification for these two groups 

still require improvement.  

The second field trial was conducted to improve the detection accuracy for larval G1 

and G2. From Figure 10, the result shows that the average percentage of the detection and 

classification accuracy for larval G1 was 87.5% and 66.7%, respectively. Meanwhile, the 

average percentage of the detection and classification accuracy for larval G2 was 79.2%, 

respectively. The results showed increasing percentage of detection and classification for the 

improved prototype as compared to the first field trial result, 38.9% and 24.8% for G1 larvae, 

and 44.3% (detection and classification) for the G1 and G2 larvae, respectively (Figure 10).  
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Figure 10. Summary of the prototype performance to detect and classify the living and dead larval G1 and G2 

in Trials 1 and 2.  

Based on Figure 11, the percentage of detection accuracy was increased with average 

detection of 87.5% and 78.7% for the living and dead G1 larvae, as compared to manual 

census, 100% accuracy. The results show that average percentage of the detection accuracy 

recorded was 79.2% for the living and dead G2 larvae. The result showed a positive result 

with 40.2% and 29.2% increment in the detection accuracy for the living and dead G2 larvae, 

respectively, as compared to the first trial result, 39% and 50% accuracy. The result showed 

that the average detection accuracy increased up to 77.8% and 75.5% for the living and dead 

pupae from 30% and 20.9% in the first trial (Figure 11), respectively. From the results, it was 

revealed that the difference on detection accuracy between manual and auto detection was 

approximately ranging from 12% to 25% for all groups. 
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Figure 11. Overall performance of the improved prototype to detect living and dead bagworms through 

automatic census against manual census in second trial. Note: Bars in a group with the different letters are 

significantly different (P<0.05) after LSD test.  

Overall, from the two trials conducted at two different locations, the results show a 

significant detection improvement, p<0.05 between the first and second trial after LSD test 

(Table 4).  

Table 4. A summary of bagworm detection for G1-G3 groups in two trials 

Group 

% Detection in 

Trial 1 

% Detection in 

Trial 2 
% Improvement 

Census duration, 

min/frond 

Live Dead Live Dead Live Dead Automatic Manual 

1(larvae) 47.0a 71.7a 87.5b 78.7b 40.5 7.0 14.0 17.2 

2(larvae) 39.1a 50.0a 79.2b 79.2b 40.1 29.2 13.9 17.0 

3(pupae) 30.1a 20.9a 77.8b 75.5b 47.7 54.6 0.5 0.8 

Note: Bars across a trial group with the different letters are significantly different (P<0.05) after LSD test. 

 

Table 4 shows a significant difference in percentage of detection between first and 

the second trial for the living and dead bagworms. Group 3 shows a high percentage of 

improvement for the living and dead pupae (47.7% & 54.6%) because of the size effect of 

the pupae compared to G1 and G2 larvae. The obvious different on sizes and location on 

palm leaflet (bottom part) gave an advantage to the pupae group. These two factors are able 

to avoid overlapping detection by algorithm, subsequently generating high percentage of 

detection of G3 pupae. Census duration for one whole frond was recorded for G1 larvae, G2 

larvae and G3 pupae by using prototype, Oto-BaCTM and manual census. The census duration 
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for G1 and G2 larvae was longer as compared to G3 because of the different technique of 

detection applied.  

4. Discussion 

Referring to Section 2.2.1 in Materials and Methods and results on detection accuracy 

for live G1 and G2 larvae, the larvae was considered alive when motion was detected in the 

processed frames. Motion was considered happening when there was a change in pixel of 

larvae contour in current frame comparing with the previous frame. Since the pixel changed 

was very minimal between two frames, a consecutive 100 frames of images that is equivalent 

to video with 4.16 seconds duration (24 frames per second) was used in the motion analysis. 

The device takes around 120 seconds (2 mins) to execute the whole larvae algorithm. When 

subtracting total time with 4 seconds used to capture frames, the algorithm takes 116 

second/100frames, equivalent to 1.16 second per frame (detection + classification). The 

processing time can be further improved by reducing the total frame (shorten the video 

duration). However, it was difficult to ensure the larvae has movement in a shorter time. 

Meanwhile, the G3 pupae only took 0.5 minutes to process and transforming data into figures. 

By using false color analysis, processing time was saved because this method 

involved applying pixel intensity of the images through slopes to classify between the living 

and dead pupae. From the test conducted, time taken was around 13 seconds. However, it can 

be fluctuated when switching the light source, due to stabilizing the lighting occasionally The 

time can be divided into time acquiring images (around 5s), identification (1s), subtracting 

infrared (IR) and red image with reference image and calculating slope (7s). Overall, the 

automatic detection was faster compared to manual census, by saving three minutes for G1 

and G2 larvae and 0.3 minutes for G3 pupae, during census. From the results of the first field 

trial, it was revealed that the percentage of detection accuracy to distinguish between the 

living and dead bagworms were averaged, approximately to 47-72% for G1 larvae and 39-

50% for G2 larvae. This part was the most challenging scope because the test on performance 

of the prototype was conducted at the field site of oil palm plantations, with bagworm 

outbreak record.  

In terms of lighting effect from surrounding/sunlight, the prototype has been equipped 

with imaging chamber or set up in a closed system operation. This condition gave a better 

recognition on bagworm features or details. According to Shivang et al. (2019), up-scaling 

the image before detection can tackle low detection problems. However, a naive upscaling is 

not competent, due to the large sized images that are too large and heavy to fit into a GPU 

processor for training. Furthermore, when the detection was carried out at the field, flatness 

of the ground or ground surface level for operating the prototype was uncertain. The structure 

of the fronds contributed to different LED light intensity which came from the Red and IR 

light sources (630nm and 940nm), to detect the living and dead pupae. This irregular ground 

flatness could be part of the factor that contributed to low percentages of the detection 

accuracy. Furthermore, the deep learning with Faster R-CNN algorithm configuration could 
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be one of the reasons on the lowered detection performance. Specificity of the model used 

must tally with the targeted object characteristic, corresponding to the configuration of 

TensorFlow. Further works on training dataset and developing codes are crucial to ensure 

that high accuracy of detection can be achieved. According to Zhou et al. (2018), a larger 

training data can improve the detection accuracy of the proposed detection model.  

Based on the second field trial results, it was revealed that the percentages of detection 

increased up to 87.5% for the G1 larvae and 79.2% for the G2 larvae. Besides, the percentage 

of detection for pupal stage (G3) was also increased up to 77%. The increment was achieved 

after training more image datasets and changing of the algorithm to detect the living larvae. 

This was successfully done by setting the first frame of the captured images as living larvae, 

not averaging 100 frames per 3 second. 

5. Conclusions 

The prototype was successfully designed, fabricated and tested. The field test was 

conducted to validate the effectiveness of the prototype through series of field trial at the 

infested areas. The final developed and tested software was integrated with Dell Inspiron 

7000 Series and NVIDIA GeForce 1050, CUDA A.I. processor as a platform to operate the 

function of the device. Design and fabrication of detector and counter was based on 3D 

imaging using an AutoCAD software. The design covered top and side view of the device to 

ensure high accuracy and precise image captured during image shooting. The fabrication of 

a detector and counter prototype involved the use of a specific and practical materials and 

was tested in the field. The results showed that the average percentage of the detection 

accuracy was recorded at average detection of 87.5% and 78.7% for the living and dead 

Group 1 larvae. Meanwhile, the average percentage of the detection accuracy for the living 

and dead Group 2 larvae was 79.2%, respectively. As for pupa in Group 3, the result showed 

that the average percentage of detection accuracy of the prototype to detect the living and 

dead pupae against manual census was 77.8% and 75.5%, respectively. From these trials, 

factors which contributed to low detection of larvae and pupae of M. plana were identified 

as follows; 

1) Size of the bagworms (larvae and pupae)  

2) Lighting effect from surrounding 

3) Flatness of ground or ground surface level during snapshot 

4) Amount of trained images in TensorFlow library 

5) Specificity of DL algorithms to detect small objects 

6) Camera FoV effectiveness during snapshot 
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6. Patents 

There are several IP outputs that have been generated from this study, including; 

pending patent filing with PI No.: 2019006153, protecting copyright of the algorithm under 

Voluntary Notification of Copyright No. CRLY 00022664, protecting design of Oto-BaCTM 

under Malaysia-Industrial Design Application with Application No. 19-01109-0101 under 

Class 10-05 and establishing trademark of Oto-BaCTM with trademark filing for Oto-BaC 

with Trade Mark Number: TM2019033069 under Class 09. 
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